예제 #1
0
vae_params = {
    'n_code': 50,
    # VAE results get worse with more epochs in preliminary optimization
    #(Pumed with threshold 50)
    'n_epochs': 50,
    'batch_size': 500,
    'n_hidden': 100,
    'normalize_inputs': True,
}

# Models without metadata
BASELINES = [
    # RandomBaseline(),
    # MostPopular(),
    Countbased(),
    SVDRecommender(1000, use_title=False),
]

RECOMMENDERS = [
    AAERecommender(adversarial=False, lr=0.001, **ae_params),
    AAERecommender(prior='gauss', gen_lr=0.001, reg_lr=0.001, **ae_params),
    VAERecommender(conditions=None, **vae_params),
    DAERecommender(conditions=None, **ae_params)
]

# Metadata to use
CONDITIONS = ConditionList([
    ('title', PretrainedWordEmbeddingCondition(VECTORS)),
    #    ('author', CategoricalCondition(embedding_dim=32, reduce="sum",
    #                                    sparse=True, embedding_on_gpu=True))
])
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--model',
        type=str,
        defaule='aae',
        # All possible method should appear here
        choices=['cm', 'svd', 'ae', 'aae', 'mlp'],
        help="Specify the model to use [aae]")
    parser.add_argument('--epochs',
                        type=int,
                        default=20,
                        help="Specify the number of training epochs [50]")
    parser.add_argument('--hidden',
                        type=int,
                        default=200,
                        help="Number of hidden units [100]")
    parser.add_argument('--no-title',
                        action='store_false',
                        default=True,
                        dest='use_title',
                        help="Do not use the playlist titles")
    parser.add_argument('--max-items',
                        type=int,
                        default=75000,
                        help="Limit the max number of considered items")
    parser.add_argument(
        '--vocab-size',
        type=int,
        default=50000,
        help="Limit the max number of distinct condition words")
    parser.add_argument('-j',
                        '--jobs',
                        type=int,
                        default=4,
                        help="Number of jobs for data loading [4].")
    parser.add_argument('-o',
                        '--outfile',
                        default="submission.csv",
                        type=str,
                        help="Write submissions to this path")
    parser.add_argument('--use-embedding',
                        default=False,
                        action='store_true',
                        help="Use embedding (SGNS GoogleNews) [false]")
    parser.add_argument('--dont-aggregate',
                        action='store_false',
                        dest='aggregate',
                        default=True,
                        help="Aggregate track metadata as side info input")
    parser.add_argument('--debug',
                        action='store_true',
                        default=False,
                        help="Activate debug mode, run only on small sample")
    parser.add_argument(
        '-x',
        '--exclude',
        type=argparse.FileType('r'),
        default=None,
        help="Path to file with slice filenames to exclude for training")
    parser.add_argument(
        '--dev',
        type=str,
        default=None,
        help='Path to dev set, use in combination with (-x, --exclude)')
    parser.add_argument('--no-idf',
                        action='store_false',
                        default=True,
                        dest='use_idf',
                        help="Do **not** use idf re-weighting")
    parser.add_argument('--lr',
                        type=float,
                        default=0.001,
                        help="Initial learning rate [0.001]")
    parser.add_argument('--code',
                        type=int,
                        default=100,
                        help="Code dimension [50]")
    args = parser.parse_args()

    # Either exclude and dev set, or no exclude and test set
    assert (args.dev is None) == (args.exclude is None)
    if args.dev is not None:
        print("Making submission for dev set:", args.dev)
        assert os.path.isfile(args.dev)

    # Dump args into submission file
    if os.path.exists(args.outfile) and \
            input("Path '{}' exists. Overwrite? [y/N]"
                  .format(args.outfile)) != 'y':
        exit(-1)

    with open(args.outfile, 'w') as out:
        print('#', args, file=out)

    if args.use_embedding:
        print("Loading embedding:", W2V_PATH)
        vectors = KeyedVectors.load_word2vec_format(W2V_PATH,
                                                    binary=W2V_IS_BINARY)
    else:
        vectors = None

    # Create the model as specified by command line args
    # Count-based never uses title
    # Decoding recommender always uses title

    tfidf_params = {'max_features': args.vocab_size, 'use_idf': args.use_idf}

    model = {
        'cm':
        Countbased(),
        'svd':
        SVDRecommender(use_title=args.use_title),
        'ae':
        AAERecommender(use_title=args.use_title,
                       adversarial=False,
                       n_hidden=args.hidden,
                       n_code=args.code,
                       n_epochs=args.epochs,
                       embedding=vectors,
                       lr=args.lr,
                       tfidf_params=tfidf_params),
        'aae':
        AAERecommender(
            use_title=args.use_title,
            adversarial=True,
            n_hidden=args.hidden,
            n_code=args.code,
            n_epochs=args.epochs,
            gen_lr=args.lr,
            reg_lr=args.lr,  # same gen and reg lrs
            embedding=vectors,
            tfidf_params=tfidf_params),
        'mlp':
        DecodingRecommender(n_epochs=args.epochs,
                            n_hidden=args.hidden,
                            embedding=vectors,
                            tfidf_params=tfidf_params)
    }[args.model]

    track_attrs = TRACK_INFO if args.aggregate else None

    if args.exclude is not None:
        # Dev set case, exclude dev set data
        exclude = [line.strip() for line in args.exclude]
    else:
        # Real submission case, do not exclude any training data
        exclude = None

    # = Training =
    print("Loading data from {} using {} jobs".format(DATA_PATH, args.jobs))
    playlists = playlists_from_slices(DATA_PATH,
                                      n_jobs=args.jobs,
                                      debug=args.debug,
                                      without=exclude)
    print("Unpacking playlists")
    train_set = Bags(*unpack_playlists(playlists, aggregate=track_attrs))

    print("Building vocabulary of {} most frequent items".format(
        args.max_items))
    vocab, __counts = train_set.build_vocab(max_features=args.max_items,
                                            apply=False)
    train_set = train_set.apply_vocab(vocab)
    print("Training set:", train_set, sep='\n')

    print("Training for {} epochs".format(args.epochs))
    try:
        model.train(train_set)
    except KeyboardInterrupt:
        print("Training interrupted by keyboard, pass.")

    # Not required anymore
    del train_set

    # = Predictions =
    if args.dev is not None:
        print("Loading and unpacking DEV set")
        data, index2playlist, side_info = unpack_playlists(
            load(args.dev), aggregate=track_attrs)
    else:
        print("Loading and unpacking test set")
        data, index2playlist, side_info = unpack_playlists(
            load(TEST_PATH), aggregate=track_attrs)
    test_set = Bags(data, index2playlist, side_info)
    # Apply same vocabulary as in training
    test_set = test_set.apply_vocab(vocab)
    print("Test set:", test_set, sep='\n')

    pred = model.predict(test_set)
    if sp.issparse(pred):
        pred = pred.toarray()
    else:
        pred = np.asarray(pred)
    print("Scaling and removing non-missing items")
    pred = remove_non_missing(pred, test_set.tocsr(), copy=False)

    index2trackid = {v: k for k, v in vocab.items()}
    print("Making submission:", args.outfile)
    make_submission(pred, index2playlist, index2trackid, outfile=args.outfile)
    print("Success.")
    print("Make sure to verify the submission format via", VERIFY_SCRIPT)
예제 #3
0
def main(year,
         dataset,
         min_count=None,
         outfile=None,
         drop=1,
         baselines=False,
         autoencoders=False,
         conditioned_autoencoders=False,
         all_metadata=True):
    """ Main function for training and evaluating AAE methods on DBLP data """

    assert baselines or autoencoders or conditioned_autoencoders, "Please specify what to run"

    if all_metadata:
        # V2 - all metadata
        CONDITIONS = ConditionList([
            ('title', PretrainedWordEmbeddingCondition(VECTORS)),
            ('venue', PretrainedWordEmbeddingCondition(VECTORS)),
            (
                'author',
                CategoricalCondition(
                    embedding_dim=32,
                    reduce="sum",  # vocab_size=0.01,
                    sparse=False,
                    embedding_on_gpu=True))
        ])
    else:
        # V1 - only title metadata
        CONDITIONS = ConditionList([
            ('title', PretrainedWordEmbeddingCondition(VECTORS))
        ])
    #### CONDITOINS defined

    ALL_MODELS = []

    if baselines:
        # Models without metadata
        BASELINES = [
            # RandomBaseline(),
            # MostPopular(),
            Countbased(),
            SVDRecommender(1000, use_title=False)
        ]

        ALL_MODELS += BASELINES

        if not all_metadata:
            # SVD can use only titles not generic conditions
            ALL_MODELS += [SVDRecommender(1000, use_title=True)]

    if autoencoders:
        AUTOENCODERS = [
            AAERecommender(adversarial=False,
                           conditions=None,
                           lr=0.001,
                           **AE_PARAMS),
            AAERecommender(adversarial=True,
                           conditions=None,
                           gen_lr=0.001,
                           reg_lr=0.001,
                           **AE_PARAMS),
            VAERecommender(conditions=None, **AE_PARAMS),
            DAERecommender(conditions=None, **AE_PARAMS)
        ]
        ALL_MODELS += AUTOENCODERS

    if conditioned_autoencoders:
        # Model with metadata (metadata used as set in CONDITIONS above)
        CONDITIONED_AUTOENCODERS = [
            AAERecommender(adversarial=False,
                           conditions=CONDITIONS,
                           lr=0.001,
                           **AE_PARAMS),
            AAERecommender(adversarial=True,
                           conditions=CONDITIONS,
                           gen_lr=0.001,
                           reg_lr=0.001,
                           **AE_PARAMS),
            DecodingRecommender(CONDITIONS,
                                n_epochs=100,
                                batch_size=1000,
                                optimizer='adam',
                                n_hidden=100,
                                lr=0.001,
                                verbose=True),
            VAERecommender(conditions=CONDITIONS, **AE_PARAMS),
            DAERecommender(conditions=CONDITIONS, **AE_PARAMS)
        ]
        ALL_MODELS += CONDITIONED_AUTOENCODERS

    print("Finished preparing models:", *ALL_MODELS, sep='\n\t')

    path = DATA_PATH + ("dblp-ref/" if dataset == "dblp" else "acm.txt")
    print("Loading data from", path)
    papers = papers_from_files(path, dataset, n_jobs=4)
    print("Unpacking {} data...".format(dataset))
    bags_of_papers, ids, side_info = unpack_papers(papers)
    del papers
    bags = Bags(bags_of_papers, ids, side_info)
    if args.compute_mi:
        from aaerec.utils import compute_mutual_info
        print("[MI] Dataset:", dataset)
        print("[MI] min Count:", min_count)
        tmp = bags.build_vocab(min_count=min_count, max_features=None)
        mi = compute_mutual_info(tmp,
                                 conditions=None,
                                 include_labels=True,
                                 normalize=True)
        with open('mi.csv', 'a') as mifile:
            print(dataset, min_count, mi, sep=',', file=mifile)

        print("=" * 78)
        exit(0)

    log("Whole dataset:", logfile=outfile)
    log(bags, logfile=outfile)

    evaluation = Evaluation(bags, year, logfile=outfile)
    evaluation.setup(min_count=min_count, min_elements=2, drop=drop)
    with open(outfile, 'a') as fh:
        print("~ Partial List + Titles + Author + Venue", "~" * 42, file=fh)
    evaluation(ALL_MODELS, batch_size=1000)