class LogRegTests(unittest.TestCase): def setUp(self): self.stat_calc = Identity(degree=2, cross=False) self.distancefunc = LogReg(self.stat_calc, seed=1) self.rng = np.random.RandomState(1) def test_distance(self): d1 = 0.5 * self.rng.randn(100, 2) - 10 d2 = 0.5 * self.rng.randn(100, 2) + 10 d1 = d1.tolist() d2 = d2.tolist() # Checks whether wrong input type produces error message self.assertRaises(TypeError, self.distancefunc.distance, 3.4, d2) self.assertRaises(TypeError, self.distancefunc.distance, d1, 3.4) # completely separable datasets should have a distance of 1.0 self.assertEqual(self.distancefunc.distance(d1, d2), 1.0) # equal data sets should have a distance of 0.0 self.assertEqual(self.distancefunc.distance(d1, d1), 0.0) def test_dist_max(self): self.assertTrue(self.distancefunc.dist_max() == 1.0)
class LogRegTests(unittest.TestCase): def setUp(self): self.stat_calc = Identity(degree = 1, cross = 0) self.distancefunc = LogReg(self.stat_calc) def test_distance(self): d1 = 0.5 * np.random.randn(100,2) - 10 d2 = 0.5 * np.random.randn(100,2) + 10 #Checks whether wrong input type produces error message self.assertRaises(TypeError, self.distancefunc.distance, 3.4, d2) self.assertRaises(TypeError, self.distancefunc.distance, d1, 3.4) # completely separable datasets should have a distance of 1.0 self.assertEqual(self.distancefunc.distance(list(d1),list(d2)), 1.0) # equal data sets should have a distance of 0.0 self.assertEqual(self.distancefunc.distance(list(d1),list(d1)), 0.0) def test_dist_max(self): self.assertTrue(self.distancefunc.dist_max() == 1.0)