예제 #1
0
def test_rates_ratio_aa(counts_data):
    exp = Experiment(data=counts_data)
    aa_test = HypothesisTest(inference_method='rates_ratio',
                             metric='metric',
                             control='A',
                             variation='A')
    aa_results = exp.run_test(aa_test)
    assert not aa_results.accept_hypothesis
예제 #2
0
def test_rates_ratio_larger(counts_data):
    exp = Experiment(data=counts_data)
    ab_test = HypothesisTest(inference_method='rates_ratio',
                             metric='metric',
                             hypothesis='larger',
                             control='A',
                             variation='C')
    ab_results = exp.run_test(ab_test)
    assert ab_results.accept_hypothesis
def test_bayesian_gaussian(means_data):
    exp = Experiment(data=means_data)
    test = HypothesisTest(inference_method='gaussian',
                          metric='metric',
                          control='A',
                          variation='F')
    inference_kwargs = dict(inference_method='sample')
    test_results = exp.run_test(test, inference_kwargs=inference_kwargs)
    assert pytest.approx(test_results.prob_greater, rel=.1, abs=.01) == 1.
def test_bayesian_binomial(proportions_data_large):
    exp = Experiment(data=proportions_data_large)
    test = HypothesisTest(inference_method='binomial',
                          metric='metric',
                          control='A',
                          variation='C')
    inference_kwargs = dict(inference_method='sample')
    test_results = exp.run_test(test, inference_kwargs=inference_kwargs)
    assert pytest.approx(test_results.prob_greater, rel=.1, abs=.01) == 1.
예제 #5
0
def test_frequentist_methods():
    exp = Experiment(data=proportions_data_large)
    test = HypothesisTest(metric='metric',
                          control='A',
                          variation='C',
                          inference_method='proportions_delta')
    test_results = exp.run_test(test)

    assert test_results.accept_hypothesis
def test_empty_observations_exception(proportions_data_large):
    exp = Experiment(data=proportions_data_large)
    # no F variation in proportions_data_large
    with pytest.raises(ValueError):
        test = HypothesisTest(inference_method='binomial',
                              metric='metric',
                              control='A',
                              variation='F')
        inference_kwargs = dict(inference_method='sample')
        _ = exp.run_test(test, inference_kwargs=inference_kwargs)
예제 #7
0
def test_proportions_delta_aa(proportions_data_small):
    exp = Experiment(proportions_data_small, name='proportions-test')

    # run A/A test
    test_aa = HypothesisTest(metric='metric',
                             control='A',
                             variation='A',
                             hypothesis='larger',
                             inference_method='proportions_delta')
    results_aa = exp.run_test(test_aa)
    assert not results_aa.accept_hypothesis
예제 #8
0
def test_means_delta_experiment_aa(means_data):
    exp = Experiment(means_data, name='means-test')

    test_ab = HypothesisTest(metric='metric',
                             control='A',
                             variation='A',
                             hypothesis='larger',
                             inference_method='means_delta')
    results_ab = exp.run_test(test_ab)
    assert results_ab.test_statistic == 'z'
    assert not results_ab.accept_hypothesis
예제 #9
0
def test_means_delta_experiment_t(means_data):
    """Small sample sizes defautl to t-tests"""
    exp = Experiment(means_data.sample(29), name='means-test')

    test_ab = HypothesisTest(metric='metric',
                             control='A',
                             variation='A',
                             hypothesis='unequal',
                             inference_method='means_delta')
    results_ab = exp.run_test(test_ab)
    assert results_ab.test_statistic == 't'
예제 #10
0
def test_small_bootstrap_larger_ab_test(proportions_data_small):
    exp = Experiment(proportions_data_small, name='proportions-test')

    # run A/B test
    test_ab = HypothesisTest(metric='metric',
                             control='A',
                             variation='D',
                             hypothesis='smaller',
                             inference_method='bootstrap')
    results_ab = exp.run_test(test_ab)

    assert not results_ab.accept_hypothesis
예제 #11
0
def test_proportions_delta_ab_unequal(proportions_data_small):
    exp = Experiment(proportions_data_small, name='proportions-test')

    # run A/B test
    test_ab = HypothesisTest(metric='metric',
                             control='A',
                             variation='F',
                             hypothesis='unequal',
                             inference_method='proportions_delta')
    results_ab = exp.run_test(test_ab)

    assert results_ab.test_statistic == 'z'
    assert results_ab.accept_hypothesis
예제 #12
0
def test_small_default_bootstrap_unequal_ab_test(proportions_data_large):
    exp = Experiment(proportions_data_large, name='proportions-test')

    # run A/B test
    test_ab = HypothesisTest(metric='metric',
                             control='A',
                             variation='B',
                             hypothesis='unequal',
                             inference_method='bootstrap')
    results_ab = exp.run_test(test_ab)

    assert results_ab.test_statistic == 'mean'
    assert results_ab.accept_hypothesis
예제 #13
0
def test_large_proportions_delta_expermiment(proportions_data_large):
    exp = Experiment(proportions_data_large, name='proportions-test')

    # run 'A/A' test
    test_aa = HypothesisTest(metric='metric',
                             control='A',
                             variation='A',
                             hypothesis='larger',
                             inference_method='proportions_delta')
    results_aa = exp.run_test(test_aa)

    assert results_aa.test_statistic == 'z'
    assert not results_aa.accept_hypothesis

    # run A/B test
    test_ab = HypothesisTest(metric='metric',
                             control='A',
                             variation='B',
                             hypothesis='larger',
                             inference_method='proportions_delta')
    results_ab = exp.run_test(test_ab)

    assert results_ab.test_statistic == 'z'
    assert results_ab.accept_hypothesis
예제 #14
0
def test_small_median_bootstrap_aa_test(proportions_data_small):
    exp = Experiment(proportions_data_small, name='proportions-test')

    # run A/B test
    test_ab = HypothesisTest(
        metric='metric',
        control='A',
        variation='A',
        hypothesis='unequal',
        inference_method='bootstrap',
        statistic_function=median,
    )
    results_ab = exp.run_test(test_ab)

    assert results_ab.test_statistic == 'median'
    assert not results_ab.accept_hypothesis
예제 #15
0
def test_custom_metric():
    exp = Experiment(means_data, name='means-test')

    def custom_metric(row):
        return 4 + np.random.rand(
        ) if row['treatment'] != 'A' else np.random.rand()

    test_ab = HypothesisTest(metric=CustomMetric(custom_metric),
                             control='A',
                             variation='F',
                             hypothesis='larger',
                             inference_method='means_delta')
    results_ab = exp.run_test(test_ab)
    results_ab.to_dataframe()

    assert results_ab.test_statistic == 'z'
    assert results_ab.accept_hypothesis