def loadResources(self): """ Loads the resources from the previously set resource pool. @raise Exception: when some of the resources required by the learner is not available in the ResourcePool object. """ AbstractIterativeLearner.loadResources(self) Y = self.resource_pool['train_labels'] self.Y = Y #Number of training examples self.size = Y.shape[0] if not Y.shape[1] == 1: raise Exception( 'GreedyRLS currently supports only one output at a time. The output matrix is now of shape ' + str(Y.shape) + '.') X = self.resource_pool['train_features'] self.setDataMatrix(X.T) if self.resource_pool.has_key('bias'): self.bias = float(self.resource_pool['bias']) else: self.bias = 0. if self.resource_pool.has_key('measure'): self.measure = self.resource_pool['measure'] else: self.measure = None qids = self.resource_pool['train_qids'] if not self.resource_pool.has_key('cross-validation_folds'): self.resource_pool['cross-validation_folds'] = qids self.setQids(qids) self.results = {}
def loadResources(self): """ Loads the resources from the previously set resource pool. @raise Exception: when some of the resources required by the learner is not available in the ResourcePool object. """ AbstractIterativeLearner.loadResources(self) Y = self.resource_pool['train_labels'] self.Y = Y #Number of training examples self.size = Y.shape[0] if not Y.shape[1] == 1: raise Exception('GreedyRLS currently supports only one output at a time. The output matrix is now of shape ' + str(Y.shape) + '.') X = self.resource_pool['train_features'] self.setDataMatrix(X.T) if self.resource_pool.has_key('bias'): self.bias = float(self.resource_pool['bias']) else: self.bias = 0. if self.resource_pool.has_key('measure'): self.measure = self.resource_pool['measure'] else: self.measure = None qids = self.resource_pool['train_qids'] if not self.resource_pool.has_key('cross-validation_folds'): self.resource_pool['cross-validation_folds'] = qids self.setQids(qids) self.results = {}
def loadResources(self): AbstractIterativeLearner.loadResources(self) X = self.resource_pool[data_sources.TRAIN_FEATURES] if isinstance(X, sp.base.spmatrix): self.X = X.todense() else: self.X = X self.X = self.X.T self.Y = self.resource_pool[data_sources.TRAIN_LABELS] #Number of training examples self.size = self.Y.shape[0] #if not self.Y.shape[1] == 1: # raise Exception('GreedyRLS currently supports only one output at a time. The output matrix is now of shape ' + str(self.Y.shape) + '.') if self.resource_pool.has_key('bias'): self.bias = float(self.resource_pool['bias']) else: self.bias = 0. if self.resource_pool.has_key(data_sources.PERFORMANCE_MEASURE): self.measure = self.resource_pool[data_sources.PERFORMANCE_MEASURE] else: self.measure = None self.results = {}