def sample_52(): """ 5.2 使用bokeh交互可视化 :return: """ from abupy import ABuMarketDrawing ABuMarketDrawing.plot_candle_form_klpd(tsla_df, html_bk=True)
def sample_415(): """ 4.1.5 重采样数据 :return """ days = pd.date_range('2017-1-1', periods=stock_day_change.shape[1], freq='1d') stock_symbols = ['股票 ' + str(x) for x in xrange(stock_day_change.shape[0])] df = pd.DataFrame(stock_day_change, index=stock_symbols, columns=days) df = df.T df_stock0 = df['股票 0'] # 以5天为周期重采样(周k) df_stock0_5 = pd_resample(df_stock0.cumsum(), '5D', how='ohlc') # 以21天为周期重采样(月k), # noinspection PyUnusedLocal df_stock0_20 = pd_resample(df_stock0.cumsum(), '21D', how='ohlc') # 打印5天重采样,如下输出2017-01-01, 2017-01-06, 2017-01-11, 表4-6所示 print('df_stock0_5.head():\n', df_stock0_5.head()) from abupy import ABuMarketDrawing # 图4-2所示 ABuMarketDrawing.plot_candle_stick(df_stock0_5.index, df_stock0_5['open'].values, df_stock0_5['high'].values, df_stock0_5['low'].values, df_stock0_5['close'].values, np.random.random(len(df_stock0_5)), None, 'stock', day_sum=False, html_bk=False, save=False) print('type(df_stock0_5.open.values):', type(df_stock0_5['open'].values)) print('df_stock0_5.open.index:\n', df_stock0_5['open'].index) print('df_stock0_5.columns:\n', df_stock0_5.columns)
def sample_45_2(): """ 4.5 实例3 :跳空缺口 :return: """ # axis=1即行数据,tsla_df的每一条行数据即为每一个交易日数据 tsla_df.apply(judge_jump, axis=1) print('jump_pd:\n', jump_pd) from abupy import ABuMarketDrawing # view_indexs传入jump_pd.index,即在k图上使用圆来标示跳空点 ABuMarketDrawing.plot_candle_form_klpd(tsla_df, view_indexs=jump_pd.index) plt.show()
def sample_111(): """ 11.1 搜索引擎与量化交易 请对照阅读ABU量化系统使用文档 :第16节 UMP主裁交易决策 中相关内容 :return: """ abu_result_tuple_train, abu_result_tuple_test, metrics_train, metrics_test = load_abu_result_tuple() orders_pd_train = abu_result_tuple_train.orders_pd # 选择失败的前20笔交易绘制交易快照 # 这里只是示例,实战中根据需要挑选,rank或者其他方式 plot_simple = orders_pd_train[orders_pd_train.profit_cg < 0][:20] # save=True保存在本地,文件保存在~/abu/data/save_png/中 ABuMarketDrawing.plot_candle_from_order(plot_simple, save=True)
def sample_c2(): """ C.2 量化技术指标应用: 对量化策略失败结果的人工分析 :return: """ abupy.env.disable_example_env_ipython() # 从之前章节的缓存中读取交易数据 abu_result_tuple_train = abu.load_abu_result_tuple( n_folds=5, store_type=EStoreAbu.E_STORE_CUSTOM_NAME, custom_name='train_cn') # 只筛选orders中有交易结果的单子 has_result = abu_result_tuple_train.orders_pd[ abu_result_tuple_train.orders_pd.result == -1] # 随便拿一个交易数据作为示例 sample_order = has_result.ix[100] _ = ABuMarketDrawing.plot_candle_from_order(sample_order) nd.macd.plot_macd_from_order(sample_order, date_ext=252) nd.boll.plot_boll_from_order(has_result.ix[100], date_ext=252) nd.ma.plot_ma_from_order(has_result.ix[100], date_ext=252, time_period=[10, 20, 30, 60, 90, 120])
def sample_111(): """ 11.1 搜索引擎与量化交易 请对照阅读ABU量化系统使用文档 :第16节 UMP主裁交易决策 中相关内容 :return: """ abu_result_tuple_train, abu_result_tuple_test, metrics_train, metrics_test = load_abu_result_tuple( ) orders_pd_train = abu_result_tuple_train.orders_pd # 选择失败的前20笔交易绘制交易快照 # 这里只是示例,实战中根据需要挑选,rank或者其他方式 plot_simple = orders_pd_train[orders_pd_train.profit_cg < 0][:20] # save=True保存在本地,文件保存在~/abu/data/save_png/中 ABuMarketDrawing.plot_candle_from_order(plot_simple, save=True)
def sample_c2(): """ C.2 量化技术指标应用: 对量化策略失败结果的人工分析 :return: """ abupy.env.disable_example_env_ipython() # 从之前章节的缓存中读取交易数据 abu_result_tuple_train = abu.load_abu_result_tuple(n_folds=5, store_type=EStoreAbu.E_STORE_CUSTOM_NAME, custom_name='train_cn') # 只筛选orders中有交易结果的单子 has_result = abu_result_tuple_train.orders_pd[ abu_result_tuple_train.orders_pd.result == -1] # 随便拿一个交易数据作为示例 sample_order = has_result.ix[100] _ = ABuMarketDrawing.plot_candle_from_order(sample_order) nd.macd.plot_macd_from_order(sample_order, date_ext=252) nd.boll.plot_boll_from_order(has_result.ix[100], date_ext=252) nd.ma.plot_ma_from_order(has_result.ix[100], date_ext=252, time_period=[10, 20, 30, 60, 90, 120])
if i == 0: emas[i] = cps[i] if i > 0: emas[i] = ((days - 1) * emas[i - 1] + 2 * cps[i]) / (days + 1) return emas stock_k['ema10'] = get_EMA(stock_k.close, 10) stock_k['ema60'] = get_EMA(stock_k.close, 60) plt.plot(stock_k.ema10, c='r') plt.plot(stock_k.ema60, c='green') plt.plot(stock_k.close, c='blue') plt.show() from abupy import ABuMarketDrawing ABuMarketDrawing.plot_candle_form_klpd(stock_k, html_bk=False) print('test2') stock_table = pd.DataFrame() df = ts.get_tick_data(stock_code, date='2019-2-25', src='tt') #获取详细数据 for current_date in stock_k.index: # 通过loc选中K线图中对应current_date这天的数据 current_k_line = stock_k.loc[current_date] # 提取这一天前10分钟股票信息 df = ts.get_tick_data(stock_code, date=current_date, src='tt') df['time'] = pd.to_datetime(current_date + ' ' + df['time']) t = pd.to_datetime(current_date).replace(hour=9, minute=40)
#%% df_stock0 = df['stock0'] df_stock0.head() df_stock0.cumsum().plot() #%% df_stock0_5 = df_stock0.cumsum().resample('5D').ohlc() df_stock0_20 = df_stock0.cumsum().resample('21D').ohlc() df_stock0_5.head() #%% ABuMarketDrawing.plot_candle_stick(df_stock0_5.index, df_stock0_5['open'].values, df_stock0_5['high'].values, df_stock0_5['low'].values, df_stock0_5['close'].values, np.random.random(len(df_stock0_5)), None, 'stock', day_sum=False, html_bk=False, save=False) #%% print(type(df_stock0_5['open'].values)) print(df_stock0_5['open'].index) print(df_stock0_5.columns) #%% tsla_df = ABuSymbolPd.make_kl_df('usTSLA', n_folds=3) tsla_df.tail() tsla_df[['close', 'volume']].plot(subplots=True, style=['r', 'g'], grid=True) #%%
# 2018-01-16 -6.890551 -6.091618 -6.890551 -6.827189 # 2018-01-21 -5.682790 -5.682790 -8.021937 -7.980051 """ 下面的代码使用abu量化系统中的ABuMarketDrawing.plot_candle_stick()方法,将数据的高开低收K线图绘制出来, 从而得到从日线级别的数据重新构建出轴线的数据,并且可视化 *注意下面K线线图的volum成交量通过np.random.random(len(df_stock5))生成的随机数据进行填充 *k线图的绘制将在数据可视化章节中详细的说明 """ from abupy import ABuMarketDrawing ABuMarketDrawing.plot_candle_stick(df_stock5.index, df_stock5['open'].values, df_stock5['high'].values, df_stock5['low'].values, df_stock5['close'].values, np.random.random(len(df_stock5)), None, 'stock', day_sum=False, html_bk=False, save=False) #结果如图pandas-2所示,类似的可以得到月k线 ABuMarketDrawing.plot_candle_stick(df_stock20.index, df_stock20['open'].values, df_stock20['high'].values, df_stock20['low'].values, df_stock20['close'].values, np.random.random(len(df_stock20)), None, 'stock', day_sum=False,
def plot_order_candle_myself(order, start=60, end=10): """ 绘制订单蜡烛图 :param order: AbuOrder对象序列 """ stock_code = order.symbol from abupy import code_to_symbol sh_stock_code = code_to_symbol(stock_code).value all_pd, df_req_start, df_req_end = load_kline_df(sh_stock_code) mask_date = all_pd['date'] == order.buy_date st_key = all_pd[mask_date]['key'] if order.sell_type == 'keep': rv_pd = all_pd[all_pd.key >= st_key.values[0]] # 买入到卖出之间的数据 st_sell_key = all_pd[mask_date]['key'] else: mask_sell_date = all_pd['date'] == order.sell_date # 卖出日期 st_sell_key = all_pd[mask_sell_date]['key'] # 卖出日期key rv_pd = all_pd[all_pd.key >= st_key.values[0]] rv_pd = rv_pd[rv_pd.key < st_sell_key.values[0] + 1] tempList = [] for k in rv_pd.index: tempList.append(k) if hasattr(order, 'bigWave2Close2'): all_pd['bigWave2Close2'] = order.bigWave2Close2 # all_pd['ema10'] = get_EMA(all_pd.close, 10) # all_pd['ema60'] = get_EMA(all_pd.close, 60) # tempList.append(order.bigWave2Close2Date) from abupy import ABuMarketDrawing all_pd = all_pd[all_pd.key >= (st_key.values[0] - start)] all_pd = all_pd[all_pd.key < (st_sell_key.values[0] + end)] all_pd.name = stock_code benchmark = IndexSymbol.SH bench_pd = ABuSymbolPd.make_kl_df( benchmark, data_mode=EMarketDataSplitMode.E_DATA_SPLIT_UNDO, n_folds=None, start=None, end=None) bench_mask_date = bench_pd['date'] == order.buy_date # 买入日期 bench_st_key = bench_pd[bench_mask_date]['key'] # 买入日期key # bench_pd = bench_pd[bench_pd.key > bench_st_key.values[0] - start] # bench_pd = bench_pd[bench_pd.key < bench_st_key.values[0] + end] if order.sell_type == 'keep': rv_pd = bench_pd[bench_pd.key >= bench_st_key.values[0]] # 买入到卖出之间的数据 bench_st_sell_key = bench_st_key # 卖出日期key else: bench_mask_sell_date = bench_pd['date'] == order.sell_date # 卖出日期 bench_st_sell_key = bench_pd[bench_mask_sell_date]['key'] # 卖出日期key rv_pd = bench_pd[bench_pd.key >= bench_st_key.values[0]] rv_pd = rv_pd[rv_pd.key < bench_st_sell_key.values[0] + 1] bench_pd = bench_pd[bench_pd.key >= (bench_st_key.values[0] - start)] bench_pd = bench_pd[bench_pd.key <= (bench_st_sell_key.values[0] + end)] ABuMarketDrawing.plot_candle_form_klpd(all_pd, html_bk=False, view_indexs=tempList, bench=bench_pd, order=order, save=True)
import math import abupy from abupy import abu, EMarketTargetType, AbuMetricsBase, ABuMarketDrawing, ABuProgress, ABuSymbolPd, get_price, \ ABuIndustries, AbuDataParseWrap, SupportMixin, ABuNetWork from abupy import EMarketDataFetchMode, EDataCacheType, EMarketSourceType, FuturesBaseMarket, TCBaseMarket, ABuDateUtil from abupy.MarketBu.ABuDataFeed import OkexApi abupy.env.g_data_fetch_mode = EMarketDataFetchMode.E_DATA_FETCH_FORCE_NET # ABuSymbolPd.make_kl_df('usBIDU').tail() abupy.env.g_private_data_source = OkexApi btc=ABuSymbolPd.make_kl_df('btc') print(btc) ABuMarketDrawing.plot_candle_form_klpd(btc)
# df_stock0=Trydataframe6['股票0'] # print(df_stock0) # dt_stock0_draw = df_stock0.cumsum().plot() # plt.show() Trydataframe6_5 = Trydataframe6.resample('21D', how='ohlc')['股票0'] # print(Trydataframe6_5) # print(Trydataframe6_5['open']) print(Trydataframe6_5.columns) ABuMarketDrawing.plot_candle_stick(Trydataframe6_5.index, Trydataframe6_5['open'].values, Trydataframe6_5['high'].values, Trydataframe6_5['low'].values, Trydataframe6_5['close'].values, np.random.random(len(Trydataframe6_5)), None, 'stock', day_sum=False, html_bk=False, save=False) # print(stock_day_change) # print(stock_day_change[0:2,:5]) # tmp=stock_day_change[0:1,:5].copy() # stock_day_change[0:2,0:5]=stock_day_change[-2:,-5:] # print(stock_day_change[0:2,0:5],stock_day_change[-2:,-5:]) # mask = stock_day_change[0:2,0:5]>0.5 # print(mask) # tmp_test = stock_day_change[0:2,0:5].copy() # aa = tmp_test[mask] # print(mask,aa)
zip(tsla_part_df.index, tsla_part_df.open, tsla_part_df.close, tsla_part_df.high, tsla_part_df.low)): d = mpf.date2num(d) val = (d, o, c, h, l) quotes.append(val) mpf.candlestick_ochl(ax, quotes, width=0.6, colorup=__colorup__, colordown=__colordown__) ax.autoscale_view() ax.xaxis_date() # 引用 Bokeh 支持交互可视化 from abupy import ABuMarketDrawing ABuMarketDrawing.plot_candle_form_klpd(tsla_df, html_bk=True) # 使用 Pandas 可视化数据 demo_list = np.array([2, 4, 16, 20]) demo_window = 3 pd.rolling_std(demo_list, window=demo_window, center=False) * np.sqrt(demo_window) tsla_df_copy = tsla_df.copy() # 计算投资回报 tsla_df_copy['return'] = np.log(tsla_df['close'] / tsla_df['close'].shift(1)) # 移动收益标准差 tsla_df_copy['mov_std'] = pd.rolling_std( tsla_df_copy['return'], window=20, center=False) * np.sqrt(20) # 加权移动收益标准差 tsla_df_copy['std_ewm'] = pd.ewmstd(
ps, start=start, end=end, n_folds=n_folds, choice_symbols=choice_symbols) ABuProgress.clear_output() metrics = AbuMetricsBase.show_general(*abu_result_tuple, returns_cmp=only_info, only_info=only_info, only_show_returns=True) return abu_result_tuple, metrics # 买入策略使用AbuDownUpTrend buy_factors = [{'class': AbuDownUpTrend}] # 卖出策略:利润保护止盈策略+风险下跌止损+较大的止盈位 sell_factors = [{ 'stop_loss_n': 1.0, 'stop_win_n': 3.0, 'class': AbuFactorAtrNStop }, { 'class': AbuFactorPreAtrNStop, 'pre_atr_n': 1.5 }, { 'class': AbuFactorCloseAtrNStop, 'close_atr_n': 1.5 }] # 开始回测 abu_result_tuple, metrics = run_loo_back(us_choice_symbols, only_info=True) ABuMarketDrawing.plot_candle_from_order(abu_result_tuple.orders_pd)