예제 #1
0
def get_exception_in_cython():
    # accumulation_tree is required by tdigest
    from accumulation_tree import AccumulationTree  # pylint: disable=import-outside-toplevel
    t = AccumulationTree(lambda x: x)
    t.insert(1, '1')
    try:
        return t.insert('1', '1')
    except TypeError as err:
        return err
예제 #2
0
def RBTree(data):
    t = AccumulationTree(lambda centroid: centroid.count)
    for k, v in data:
        t.insert(k, v)
    return t
예제 #3
0
파일: tdigest.py 프로젝트: afcarl/tdigest
class TDigest(object):
    def __init__(self, delta=0.01, K=25):

        self.C = AccumulationTree(_centroid_count)
        self.n = 0
        self.delta = delta
        self.K = K

    def __add__(self, other_digest):
        data = list(chain(self.C.values(), other_digest.C.values()))
        new_digest = TDigest(self.delta, self.K)

        if len(data) > 0:
            for c in pyudorandom.items(data):
                new_digest.update(c.mean, c.count)

        return new_digest

    def __len__(self):
        return len(self.C)

    def __repr__(self):
        return """<T-Digest: n=%d, centroids=%d>""" % (self.n, len(self))

    def __iter__(self):
        """
        Iterates over centroids in the digest.
        """
        return iter(self.centroids_to_list())

    def _add_centroid(self, centroid):
        if centroid.mean not in self.C:
            self.C.insert(centroid.mean, centroid)
        else:
            self.C[centroid.mean].update(centroid.mean, centroid.count)

    def _compute_centroid_quantile(self, centroid):
        denom = self.n
        cumulative_sum = self.C.get_left_accumulation(centroid.mean)
        return (centroid.count / 2. + cumulative_sum) / denom

    def _update_centroid(self, centroid, x, w):
        self.C.pop(centroid.mean)
        centroid.update(x, w)
        self._add_centroid(centroid)

    def _find_closest_centroids(self, x):
        try:
            ceil_key = self.C.ceiling_key(x)
        except KeyError:
            floor_key = self.C.floor_key(x)
            return [self.C[floor_key]]

        try:
            floor_key = self.C.floor_key(x)
        except KeyError:
            ceil_key = self.C.ceiling_key(x)
            return [self.C[ceil_key]]

        if abs(floor_key - x) < abs(ceil_key - x):
            return [self.C[floor_key]]
        elif abs(floor_key - x) == abs(ceil_key -
                                       x) and (ceil_key != floor_key):
            return [self.C[ceil_key], self.C[floor_key]]
        else:
            return [self.C[ceil_key]]

    def _threshold(self, q):
        return 4 * self.n * self.delta * q * (1 - q)

    def update(self, x, w=1):
        """
        Update the t-digest with value x and weight w.

        """
        self.n += w

        if len(self) == 0:
            self._add_centroid(Centroid(x, w))
            return

        S = self._find_closest_centroids(x)

        while len(S) != 0 and w > 0:
            j = choice(list(range(len(S))))
            c_j = S[j]

            q = self._compute_centroid_quantile(c_j)

            # This filters the out centroids that do not satisfy the second part
            # of the definition of S. See original paper by Dunning.
            if c_j.count + w > self._threshold(q):
                S.pop(j)
                continue

            delta_w = min(self._threshold(q) - c_j.count, w)
            self._update_centroid(c_j, x, delta_w)
            w -= delta_w
            S.pop(j)

        if w > 0:
            self._add_centroid(Centroid(x, w))

        if len(self) > self.K / self.delta:
            self.compress()

        return

    def batch_update(self, values, w=1):
        """
        Update the t-digest with an iterable of values. This assumes all points have the
        same weight.
        """
        for x in values:
            self.update(x, w)
        self.compress()
        return

    def compress(self):
        T = TDigest(self.delta, self.K)
        C = list(self.C.values())
        for c_i in pyudorandom.items(C):
            T.update(c_i.mean, c_i.count)
        self.C = T.C

    def percentile(self, p):
        """
        Computes the percentile of a specific value in [0,100].
        """

        if not (0 <= p <= 100):
            raise ValueError("p must be between 0 and 100, inclusive.")

        p = float(p) / 100.
        p *= self.n
        c_i = None
        t = 0

        if p == 0:
            return self.C.min_item()[1].mean

        for i, key in enumerate(self.C.keys()):
            c_i_plus_one = self.C[key]
            if i == 0:
                k = c_i_plus_one.count / 2

            else:
                k = (c_i_plus_one.count + c_i.count) / 2.
                if p < t + k:
                    z1 = p - t
                    z2 = t + k - p
                    return (c_i.mean * z2 + c_i_plus_one.mean * z1) / (z1 + z2)
            c_i = c_i_plus_one
            t += k

        return self.C.max_item()[1].mean

    def cdf(self, x):
        """
        Computes the cdf of a specific value, ie. computes F(x) where F denotes
        the CDF of the distribution.
        """
        t = 0
        N = float(self.n)

        if len(self) == 1:  # only one centroid
            return int(x >= self.C.min_key())

        for i, key in enumerate(self.C.keys()):
            c_i = self.C[key]
            if i == len(self) - 1:
                delta = (c_i.mean - self.C.prev_item(key)[1].mean) / 2.
            else:
                delta = (self.C.succ_item(key)[1].mean - c_i.mean) / 2.
            z = max(-1, (x - c_i.mean) / delta)

            if z < 1:
                return t / N + c_i.count / N * (z + 1) / 2

            t += c_i.count
        return 1

    def trimmed_mean(self, p1, p2):
        """
        Computes the mean of the distribution between the two percentiles p1 and p2.
        This is a modified algorithm than the one presented in the original t-Digest paper.

        """
        if not (p1 < p2):
            raise ValueError("p1 must be between 0 and 100 and less than p2.")

        s = k = t = 0
        p1 /= 100.
        p2 /= 100.
        p1 *= self.n
        p2 *= self.n
        for i, key in enumerate(self.C.keys()):
            c_i = self.C[key]
            k_i = c_i.count
            if p1 < t + k_i:
                if t < p1:
                    nu = self.__interpolate(i, key, p1 - t)
                else:
                    nu = 1
                s += nu * k_i * c_i.mean
                k += nu * k_i

            if p2 < t + k_i:
                nu = self.__interpolate(i, key, p2 - t)
                s -= nu * k_i * c_i.mean
                k -= nu * k_i
                break

            t += k_i

        return s / k

    def __interpolate(self, i, key, diff):
        c_i = self.C[key]
        k_i = c_i.count

        if i == 0:
            delta = self.C.succ_item(key)[1].mean - c_i.mean
        elif i == len(self) - 1:
            delta = c_i.mean - self.C.prev_item(key)[1].mean
        else:
            delta = (self.C.succ_item(key)[1].mean -
                     self.C.prev_item(key)[1].mean) / 2.
        return (diff / k_i - 0.5) * delta

    def centroids_to_list(self):
        """
        Returns a Python list of the TDigest object's Centroid values.

        """
        centroids = []
        for key in self.C.keys():
            tree_values = self.C.get_value(key)
            centroids.append({'m': tree_values.mean, 'c': tree_values.count})
        return centroids

    def to_dict(self):
        """
        Returns a Python dictionary of the TDigest and internal Centroid values.
        Or use centroids_to_list() for a list of only the Centroid values.

        """
        return {
            'n': self.n,
            'delta': self.delta,
            'K': self.K,
            'centroids': self.centroids_to_list()
        }

    def update_from_dict(self, dict_values):
        """
        Updates TDigest object with dictionary values.

        The digest delta and K values are optional if you would like to update them,
        but the n value is not required because it is computed from the centroid weights.

        For example, you can initalize a new TDigest:
            digest = TDigest()
        Then load dictionary values into the digest:
            digest.update_from_dict({'K': 25, 'delta': 0.01, 'centroids': [{'c': 1.0, 'm': 1.0}, {'c': 1.0, 'm': 2.0}, {'c': 1.0, 'm': 3.0}]})

        Or update an existing digest where the centroids will be appropriately merged:
            digest = TDigest()
            digest.update(1)
            digest.update(2)
            digest.update(3)
            digest.update_from_dict({'K': 25, 'delta': 0.01, 'centroids': [{'c': 1.0, 'm': 1.0}, {'c': 1.0, 'm': 2.0}, {'c': 1.0, 'm': 3.0}]})

        Resulting in the digest having merged similar centroids by increasing their weight:
            {'K': 25, 'delta': 0.01, 'centroids': [{'c': 2.0, 'm': 1.0}, {'c': 2.0, 'm': 2.0}, {'c': 2.0, 'm': 3.0}], 'n': 6.0}

        Alternative you can provide only a list of centroid values with update_centroids_from_list()

        """
        self.delta = dict_values.get('delta', self.delta)
        self.K = dict_values.get('K', self.K)
        self.update_centroids_from_list(dict_values['centroids'])
        return self

    def update_centroids_from_list(self, list_values):
        """
        Add or update Centroids from a Python list.
        Any existing centroids in the digest object are appropriately updated.

        Example:
            digest.update_centroids([{'c': 1.0, 'm': 1.0}, {'c': 1.0, 'm': 2.0}, {'c': 1.0, 'm': 3.0}])

        """
        [self.update(value['m'], value['c']) for value in list_values]
        return self
예제 #4
0
파일: tdigest.py 프로젝트: tkluck/tdigest
class TDigest(object):
    def __init__(self, delta=0.01, K=25):
        self.C = AccumulationTree(lambda centroid: centroid.count)
        self.n = 0
        self.delta = delta
        self.K = K

    def __add__(self, other_digest):
        data = list(chain(self.C.values(), other_digest.C.values()))
        new_digest = TDigest(self.delta, self.K)

        if len(data) > 0:
            for c in pyudorandom.items(data):
                new_digest.update(c.mean, c.count)

        return new_digest

    def __len__(self):
        return len(self.C)

    def __repr__(self):
        return """<T-Digest: n=%d, centroids=%d>""" % (self.n, len(self))

    def _add_centroid(self, centroid):
        if centroid.mean not in self.C:
            self.C.insert(centroid.mean, centroid)
        else:
            self.C[centroid.mean].update(centroid.mean, centroid.count)

    def _compute_centroid_quantile(self, centroid):
        denom = self.n
        cumulative_sum = self.C.get_left_accumulation(centroid.mean)
        return (centroid.count / 2. + cumulative_sum) / denom

    def _update_centroid(self, centroid, x, w):
        self.C.pop(centroid.mean)
        centroid.update(x, w)
        self._add_centroid(centroid)

    def _find_closest_centroids(self, x):
        try:
            ceil_key = self.C.ceiling_key(x)
        except KeyError:
            floor_key = self.C.floor_key(x)
            return [self.C[floor_key]]

        try:
            floor_key = self.C.floor_key(x)
        except KeyError:
            ceil_key = self.C.ceiling_key(x)
            return [self.C[ceil_key]]

        if abs(floor_key - x) < abs(ceil_key - x):
            return [self.C[floor_key]]
        elif abs(floor_key - x) == abs(ceil_key -
                                       x) and (ceil_key != floor_key):
            return [self.C[ceil_key], self.C[floor_key]]
        else:
            return [self.C[ceil_key]]

    def _theshold(self, q):
        return 4 * self.n * self.delta * q * (1 - q)

    def update(self, x, w=1):
        """
        Update the t-digest with value x and weight w.

        """
        self.n += w

        if len(self) == 0:
            self._add_centroid(Centroid(x, w))
            return

        S = self._find_closest_centroids(x)

        while len(S) != 0 and w > 0:
            j = choice(list(range(len(S))))
            c_j = S[j]

            q = self._compute_centroid_quantile(c_j)

            # This filters the out centroids that do not satisfy the second part
            # of the definition of S. See original paper by Dunning.
            if c_j.count + w > self._theshold(q):
                S.pop(j)
                continue

            delta_w = min(self._theshold(q) - c_j.count, w)
            self._update_centroid(c_j, x, delta_w)
            w -= delta_w
            S.pop(j)

        if w > 0:
            self._add_centroid(Centroid(x, w))

        if len(self) > self.K / self.delta:
            self.compress()

        return

    def batch_update(self, values, w=1):
        """
        Update the t-digest with an iterable of values. This assumes all points have the 
        same weight.
        """
        for x in values:
            self.update(x, w)
        self.compress()
        return

    def compress(self):
        T = TDigest(self.delta, self.K)
        C = list(self.C.values())
        for c_i in pyudorandom.items(C):
            T.update(c_i.mean, c_i.count)
        self.C = T.C

    def percentile(self, p):
        """ 
        Computes the percentile of a specific value in [0,100].

        """
        if not (0 <= p <= 100):
            raise ValueError("p must be between 0 and 100, inclusive.")

        t = 0
        p = float(p) / 100.
        p *= self.n

        for i, key in enumerate(self.C.keys()):
            c_i = self.C[key]
            k = c_i.count
            if p < t + k:
                if i == 0:
                    return c_i.mean
                elif i == len(self) - 1:
                    return c_i.mean
                else:
                    delta = (self.C.succ_item(key)[1].mean -
                             self.C.prev_item(key)[1].mean) / 2.
                return c_i.mean + ((p - t) / k - 0.5) * delta

            t += k
        return self.C.max_item()[1].mean

    def quantile(self, q):
        """ 
        Computes the quantile of a specific value, ie. computes F(q) where F denotes
        the CDF of the distribution. 

        """
        t = 0
        N = float(self.n)

        if len(self) == 1:  # only one centroid
            return int(q >= self.C.min_key())

        for i, key in enumerate(self.C.keys()):
            c_i = self.C[key]
            if i == len(self) - 1:
                delta = (c_i.mean - self.C.prev_item(key)[1].mean) / 2.
            else:
                delta = (self.C.succ_item(key)[1].mean - c_i.mean) / 2.
            z = max(-1, (q - c_i.mean) / delta)

            if z < 1:
                return t / N + c_i.count / N * (z + 1) / 2

            t += c_i.count
        return 1

    def trimmed_mean(self, p1, p2):
        """
        Computes the mean of the distribution between the two percentiles p1 and p2.
        This is a modified algorithm than the one presented in the original t-Digest paper. 

        """
        if not (p1 < p2):
            raise ValueError("p1 must be between 0 and 100 and less than p2.")

        s = k = t = 0
        p1 /= 100.
        p2 /= 100.
        p1 *= self.n
        p2 *= self.n
        for i, key in enumerate(self.C.keys()):
            c_i = self.C[key]
            k_i = c_i.count
            if p1 < t + k_i:
                if t < p1:
                    nu = self.__interpolate(i, key, p1 - t)
                else:
                    nu = 1
                s += nu * k_i * c_i.mean
                k += nu * k_i

            if p2 < t + k_i:
                nu = self.__interpolate(i, key, p2 - t)
                s -= nu * k_i * c_i.mean
                k -= nu * k_i
                break

            t += k_i

        return s / k

    def __interpolate(self, i, key, diff):
        c_i = self.C[key]
        k_i = c_i.count

        if i == 0:
            delta = self.C.succ_item(key)[1].mean - c_i.mean
        elif i == len(self) - 1:
            delta = c_i.mean - self.C.prev_item(key)[1].mean
        else:
            delta = (self.C.succ_item(key)[1].mean -
                     self.C.prev_item(key)[1].mean) / 2.
        return (diff / k_i - 0.5) * delta