def main(_): # Create an environment, grab the spec, and use it to create networks. environment = helpers.make_environment(task=FLAGS.env_name) environment_spec = specs.make_environment_spec(environment) agent_networks = ppo.make_continuous_networks(environment_spec) # Construct the agent. config = ppo.PPOConfig(unroll_length=FLAGS.unroll_length, num_minibatches=FLAGS.num_minibatches, num_epochs=FLAGS.num_epochs, batch_size=FLAGS.batch_size) learner_logger = experiment_utils.make_experiment_logger( label='learner', steps_key='learner_steps') agent = ppo.PPO(environment_spec, agent_networks, config=config, seed=FLAGS.seed, counter=counting.Counter(prefix='learner'), logger=learner_logger) # Create the environment loop used for training. train_logger = experiment_utils.make_experiment_logger( label='train', steps_key='train_steps') train_loop = acme.EnvironmentLoop(environment, agent, counter=counting.Counter(prefix='train'), logger=train_logger) # Create the evaluation actor and loop. eval_logger = experiment_utils.make_experiment_logger( label='eval', steps_key='eval_steps') eval_actor = agent.builder.make_actor( random_key=jax.random.PRNGKey(FLAGS.seed), policy_network=ppo.make_inference_fn(agent_networks, evaluation=True), variable_source=agent) eval_env = helpers.make_environment(task=FLAGS.env_name) eval_loop = acme.EnvironmentLoop(eval_env, eval_actor, counter=counting.Counter(prefix='eval'), logger=eval_logger) assert FLAGS.num_steps % FLAGS.eval_every == 0 for _ in range(FLAGS.num_steps // FLAGS.eval_every): eval_loop.run(num_episodes=5) train_loop.run(num_steps=FLAGS.eval_every) eval_loop.run(num_episodes=5)
def main(_): # Create an environment, grab the spec, and use it to create networks. environment = helpers.make_environment(task=FLAGS.env_name) environment_spec = specs.make_environment_spec(environment) agent_networks = value_dice.make_networks(environment_spec) # Construct the agent. config = value_dice.ValueDiceConfig( num_sgd_steps_per_step=FLAGS.num_sgd_steps_per_step) agent = value_dice.ValueDice(environment_spec, agent_networks, config=config, make_demonstrations=functools.partial( helpers.make_demonstration_iterator, dataset_name=FLAGS.dataset_name), seed=FLAGS.seed) # Create the environment loop used for training. train_logger = experiment_utils.make_experiment_logger( label='train', steps_key='train_steps') train_loop = acme.EnvironmentLoop(environment, agent, counter=counting.Counter(prefix='train'), logger=train_logger) # Create the evaluation actor and loop. eval_logger = experiment_utils.make_experiment_logger( label='eval', steps_key='eval_steps') eval_actor = agent.builder.make_actor( random_key=jax.random.PRNGKey(FLAGS.seed), policy_network=value_dice.apply_policy_and_sample(agent_networks, eval_mode=True), variable_source=agent) eval_env = helpers.make_environment(task=FLAGS.env_name) eval_loop = acme.EnvironmentLoop(eval_env, eval_actor, counter=counting.Counter(prefix='eval'), logger=eval_logger) assert FLAGS.num_steps % FLAGS.eval_every == 0 for _ in range(FLAGS.num_steps // FLAGS.eval_every): eval_loop.run(num_episodes=5) train_loop.run(num_steps=FLAGS.eval_every) eval_loop.run(num_episodes=5)
def main(_): # Create an environment, grab the spec, and use it to create networks. environment = helpers.make_environment(task=FLAGS.env_name) environment_spec = specs.make_environment_spec(environment) agent_networks = td3.make_networks(environment_spec) # Construct the agent. config = td3.TD3Config(num_sgd_steps_per_step=FLAGS.num_sgd_steps_per_step) agent = td3.TD3(environment_spec, agent_networks, config=config, seed=FLAGS.seed) # Create the environment loop used for training. train_logger = experiment_utils.make_experiment_logger( label='train', steps_key='train_steps') train_loop = acme.EnvironmentLoop(environment, agent, counter=counting.Counter(prefix='train'), logger=train_logger) # Create the evaluation actor and loop. eval_logger = experiment_utils.make_experiment_logger( label='eval', steps_key='eval_steps') eval_actor = agent.builder.make_actor( random_key=jax.random.PRNGKey(FLAGS.seed), policy_network=td3.get_default_behavior_policy( agent_networks, environment_spec.actions, sigma=0.), variable_source=agent) eval_env = helpers.make_environment(task=FLAGS.env_name) eval_loop = acme.EnvironmentLoop(eval_env, eval_actor, counter=counting.Counter(prefix='eval'), logger=eval_logger) assert FLAGS.num_steps % FLAGS.eval_every == 0 for _ in range(FLAGS.num_steps // FLAGS.eval_every): eval_loop.run(num_episodes=5) train_loop.run(num_steps=FLAGS.eval_every) eval_loop.run(num_episodes=5)
def main(_): # Create an environment, grab the spec, and use it to create networks. environment = helpers.make_environment(task=FLAGS.env_name) environment_spec = specs.make_environment_spec(environment) # Construct the agent. # Local layout makes sure that we populate the buffer with min_replay_size # initial transitions and that there's no need for tolerance_rate. In order # for deadlocks not to happen we need to disable rate limiting that heppens # inside the TD3Builder. This is achieved by the min_replay_size and # samples_per_insert_tolerance_rate arguments. td3_config = td3.TD3Config( num_sgd_steps_per_step=FLAGS.num_sgd_steps_per_step, min_replay_size=1, samples_per_insert_tolerance_rate=float('inf')) td3_networks = td3.make_networks(environment_spec) if FLAGS.pretrain: td3_networks = add_bc_pretraining(td3_networks) ail_config = ail.AILConfig(direct_rl_batch_size=td3_config.batch_size * td3_config.num_sgd_steps_per_step) dac_config = ail.DACConfig(ail_config, td3_config) def discriminator(*args, **kwargs) -> networks_lib.Logits: return ail.DiscriminatorModule(environment_spec=environment_spec, use_action=True, use_next_obs=True, network_core=ail.DiscriminatorMLP( [4, 4], ))(*args, **kwargs) discriminator_transformed = hk.without_apply_rng( hk.transform_with_state(discriminator)) ail_network = ail.AILNetworks( ail.make_discriminator(environment_spec, discriminator_transformed), imitation_reward_fn=ail.rewards.gail_reward(), direct_rl_networks=td3_networks) agent = ail.DAC(spec=environment_spec, network=ail_network, config=dac_config, seed=FLAGS.seed, batch_size=td3_config.batch_size * td3_config.num_sgd_steps_per_step, make_demonstrations=functools.partial( helpers.make_demonstration_iterator, dataset_name=FLAGS.dataset_name), policy_network=td3.get_default_behavior_policy( td3_networks, action_specs=environment_spec.actions, sigma=td3_config.sigma)) # Create the environment loop used for training. train_logger = experiment_utils.make_experiment_logger( label='train', steps_key='train_steps') train_loop = acme.EnvironmentLoop(environment, agent, counter=counting.Counter(prefix='train'), logger=train_logger) # Create the evaluation actor and loop. # TODO(lukstafi): sigma=0 for eval? eval_logger = experiment_utils.make_experiment_logger( label='eval', steps_key='eval_steps') eval_actor = agent.builder.make_actor( random_key=jax.random.PRNGKey(FLAGS.seed), policy_network=td3.get_default_behavior_policy( td3_networks, action_specs=environment_spec.actions, sigma=0.), variable_source=agent) eval_env = helpers.make_environment(task=FLAGS.env_name) eval_loop = acme.EnvironmentLoop(eval_env, eval_actor, counter=counting.Counter(prefix='eval'), logger=eval_logger) assert FLAGS.num_steps % FLAGS.eval_every == 0 for _ in range(FLAGS.num_steps // FLAGS.eval_every): eval_loop.run(num_episodes=5) train_loop.run(num_steps=FLAGS.eval_every) eval_loop.run(num_episodes=5)
def main(_): # Create an environment, grab the spec, and use it to create networks. environment = helpers.make_environment(task=FLAGS.env_name) environment_spec = specs.make_environment_spec(environment) agent_networks = ppo.make_continuous_networks(environment_spec) # Construct the agent. ppo_config = ppo.PPOConfig(unroll_length=FLAGS.unroll_length, num_minibatches=FLAGS.ppo_num_minibatches, num_epochs=FLAGS.ppo_num_epochs, batch_size=FLAGS.transition_batch_size // FLAGS.unroll_length, learning_rate=0.0003, entropy_cost=0, gae_lambda=0.8, value_cost=0.25) ppo_networks = ppo.make_continuous_networks(environment_spec) if FLAGS.pretrain: ppo_networks = add_bc_pretraining(ppo_networks) discriminator_batch_size = FLAGS.transition_batch_size ail_config = ail.AILConfig( direct_rl_batch_size=ppo_config.batch_size * ppo_config.unroll_length, discriminator_batch_size=discriminator_batch_size, is_sequence_based=True, num_sgd_steps_per_step=FLAGS.num_discriminator_steps_per_step, share_iterator=FLAGS.share_iterator, ) def discriminator(*args, **kwargs) -> networks_lib.Logits: # Note: observation embedding is not needed for e.g. Mujoco. return ail.DiscriminatorModule( environment_spec=environment_spec, use_action=True, use_next_obs=True, network_core=ail.DiscriminatorMLP([4, 4], ), )(*args, **kwargs) discriminator_transformed = hk.without_apply_rng( hk.transform_with_state(discriminator)) ail_network = ail.AILNetworks( ail.make_discriminator(environment_spec, discriminator_transformed), imitation_reward_fn=ail.rewards.gail_reward(), direct_rl_networks=ppo_networks) agent = ail.GAIL(spec=environment_spec, network=ail_network, config=ail.GAILConfig(ail_config, ppo_config), seed=FLAGS.seed, batch_size=ppo_config.batch_size, make_demonstrations=functools.partial( helpers.make_demonstration_iterator, dataset_name=FLAGS.dataset_name), policy_network=ppo.make_inference_fn(ppo_networks)) # Create the environment loop used for training. train_logger = experiment_utils.make_experiment_logger( label='train', steps_key='train_steps') train_loop = acme.EnvironmentLoop(environment, agent, counter=counting.Counter(prefix='train'), logger=train_logger) # Create the evaluation actor and loop. eval_logger = experiment_utils.make_experiment_logger( label='eval', steps_key='eval_steps') eval_actor = agent.builder.make_actor( random_key=jax.random.PRNGKey(FLAGS.seed), policy_network=ppo.make_inference_fn(agent_networks, evaluation=True), variable_source=agent) eval_env = helpers.make_environment(task=FLAGS.env_name) eval_loop = acme.EnvironmentLoop(eval_env, eval_actor, counter=counting.Counter(prefix='eval'), logger=eval_logger) assert FLAGS.num_steps % FLAGS.eval_every == 0 for _ in range(FLAGS.num_steps // FLAGS.eval_every): eval_loop.run(num_episodes=5) train_loop.run(num_steps=FLAGS.eval_every) eval_loop.run(num_episodes=5)