def create_metrics(ref, test, ref_regrid, test_regrid, diff): """Creates the mean, max, min, rmse, corr in a dictionary""" metrics_dict = {} metrics_dict['ref'] = { 'min': min_cdms(ref), 'max': max_cdms(ref), 'mean': mean(ref) } metrics_dict['test'] = { 'min': min_cdms(test), 'max': max_cdms(test), 'mean': mean(test) } metrics_dict['diff'] = { 'min': min_cdms(diff), 'max': max_cdms(diff), 'mean': mean(diff) } metrics_dict['misc'] = { 'rmse': rmse(test_regrid, ref_regrid), 'corr': corr(test_regrid, ref_regrid) } return metrics_dict
def create_metrics(ref, test, ref_regrid, test_regrid, diff): """Creates the mean, max, min, rmse, corr in a dictionary""" orig_bounds = cdms2.getAutoBounds() cdms2.setAutoBounds(1) lev = ref.getLevel() if lev is not None: lev.setBounds(None) lev = test.getLevel() if lev is not None: lev.setBounds(None) lev = test_regrid.getLevel() if lev is not None: lev.setBounds(None) lev = ref_regrid.getLevel() if lev is not None: lev.setBounds(None) lev = diff.getLevel() if lev is not None: lev.setBounds(None) cdms2.setAutoBounds(orig_bounds) metrics_dict = {} metrics_dict['ref'] = { 'min': min_cdms(ref), 'max': max_cdms(ref), #'mean': numpy.nan #mean(ref, axis='yz') 'mean': mean(ref, axis='yz') } metrics_dict['test'] = { 'min': min_cdms(test), 'max': max_cdms(test), #'mean': numpy.nan #mean(test, axis='yz') 'mean': mean(test, axis='yz') } metrics_dict['diff'] = { 'min': min_cdms(diff), 'max': max_cdms(diff), #'mean': numpy.nan #mean(diff, axis='yz') 'mean': mean(diff, axis='yz') } metrics_dict['misc'] = { 'rmse': rmse(test_regrid, ref_regrid, axis='yz'), 'corr': corr(test_regrid, ref_regrid, axis='yz') } return metrics_dict
def create_metrics(ref, test, ref_regrid, test_regrid, diff): """ Creates the mean, max, min, rmse, corr in a dictionary. """ orig_bounds = cdms2.getAutoBounds() cdms2.setAutoBounds(1) lev = ref.getLevel() if lev is not None: lev.setBounds(None) lev = test.getLevel() if lev is not None: lev.setBounds(None) lev = test_regrid.getLevel() if lev is not None: lev.setBounds(None) lev = ref_regrid.getLevel() if lev is not None: lev.setBounds(None) lev = diff.getLevel() if lev is not None: lev.setBounds(None) cdms2.setAutoBounds(orig_bounds) metrics_dict = {} metrics_dict["ref"] = { "min": min_cdms(ref), "max": max_cdms(ref), "mean": mean(ref, axis="xz"), } metrics_dict["test"] = { "min": min_cdms(test), "max": max_cdms(test), "mean": mean(test, axis="xz"), } metrics_dict["diff"] = { "min": min_cdms(diff), "max": max_cdms(diff), "mean": mean(diff, axis="xz"), } metrics_dict["misc"] = { "rmse": rmse(test_regrid, ref_regrid, axis="xz"), "corr": corr(test_regrid, ref_regrid, axis="xz"), } return metrics_dict
def create_single_metrics_dict(values): d = { 'min': float(min_cdms(values)), 'max': float(max_cdms(values)), 'mean': float(mean(values)), 'std': float(std(values)) } return d
def create_single_metrics_dict(values): d = { "min": float(min_cdms(values)), "max": float(max_cdms(values)), "mean": float(mean(values)), "std": float(std(values)), } return d