def create(self, validated_data, **kwargs): workflow_obj = Workflow( user=self.context['user'], name=self.context['name'], description_text=validated_data['description_text'], nrows=0, ncols=0, attributes=validated_data['attributes'], query_builder_ops=validated_data.get('query_builder_ops', {}) ) workflow_obj.save() # Create the columns column_data = ColumnSerializer( data=validated_data.get('columns', []), many=True, context={'workflow': workflow_obj}) # And save its content if column_data.is_valid(): column_data.save() else: workflow_obj.delete() return None # Create the actions pointing to the workflow action_data = ActionSerializer( data=validated_data.get('actions', []), many=True, context={'workflow': workflow_obj} ) if action_data.is_valid(): action_data.save() else: workflow_obj.delete() return None # Create the views pointing to the workflow view_data = ViewSerializer( data=validated_data.get('views', []), many=True, context={'workflow': workflow_obj} ) if view_data.is_valid(): view_data.save() else: workflow_obj.delete() return None # Load the data frame data_frame = validated_data.get('data_frame', None) if data_frame is not None: ops.store_dataframe_in_db(data_frame, workflow_obj.id) # Reconcile now the information in workflow and columns with the # one loaded workflow_obj.data_frame_table_name = \ pandas_db.create_table_name(workflow_obj.pk) workflow_obj.ncols = validated_data['ncols'] workflow_obj.nrows = validated_data['nrows'] workflow_obj.save() return workflow_obj
def create(self, validated_data, **kwargs): # Initial values workflow_obj = None try: workflow_obj = Workflow( user=self.context['user'], name=self.context['name'], description_text=validated_data['description_text'], nrows=0, ncols=0, attributes=validated_data['attributes'], query_builder_ops=validated_data.get('query_builder_ops', {})) workflow_obj.save() # Create the columns column_data = ColumnSerializer(data=validated_data.get( 'columns', []), many=True, context={'workflow': workflow_obj}) # And save its content if column_data.is_valid(): column_data.save() else: raise Exception('Unable to save column information') # If there is any column with position = 0, recompute (this is to # guarantee backward compatibility. if workflow_obj.columns.filter(position=0).exists(): for idx, c in enumerate(workflow_obj.columns.all()): c.position = idx + 1 c.save() # Load the data frame data_frame = validated_data.get('data_frame', None) if data_frame is not None: ops.store_dataframe_in_db(data_frame, workflow_obj.id) # Reconcile now the information in workflow and columns with the # one loaded workflow_obj.data_frame_table_name = \ pandas_db.create_table_name(workflow_obj.pk) workflow_obj.ncols = validated_data['ncols'] workflow_obj.nrows = validated_data['nrows'] workflow_obj.save() # Create the actions pointing to the workflow action_data = ActionSerializer(data=validated_data.get( 'actions', []), many=True, context={'workflow': workflow_obj}) if action_data.is_valid(): action_data.save() else: raise Exception('Unable to save column information') # Create the views pointing to the workflow view_data = ViewSerializer(data=validated_data.get('views', []), many=True, context={'workflow': workflow_obj}) if view_data.is_valid(): view_data.save() else: raise Exception('Unable to save column information') except Exception: # Get rid of the objects created if workflow_obj: if workflow_obj.has_data_frame(): pandas_db.delete_table(workflow_obj.id) if workflow_obj.id: workflow_obj.delete() raise return workflow_obj
def create(self, validated_data, **kwargs): """Create the new workflow.""" wflow_name = self.context.get('name') if not wflow_name: wflow_name = self.validated_data.get('name') if not wflow_name: raise Exception(_('Unexpected empty workflow name.')) if Workflow.objects.filter(name=wflow_name, user=self.context['user']).exists(): raise Exception( _('There is a workflow with this name. ' + 'Please provide a workflow name in the import page.')) # Initial values workflow_obj = None try: workflow_obj = Workflow( user=self.context['user'], name=wflow_name, description_text=validated_data['description_text'], nrows=0, ncols=0, attributes=validated_data['attributes'], query_builder_ops=validated_data.get('query_builder_ops', {}), ) workflow_obj.save() # Create the columns column_data = ColumnSerializer(data=validated_data.get( 'columns', []), many=True, context={'workflow': workflow_obj}) # And save its content if column_data.is_valid(): columns = column_data.save() else: raise Exception(_('Unable to save column information')) # If there is any column with position = 0, recompute (this is to # guarantee backward compatibility. if any(col.position == 0 for col in columns): for idx, col in enumerate(columns): col.position = idx + 1 col.save() # Load the data frame data_frame = validated_data.get('data_frame') if data_frame is not None: # Store the table in the DB store_table( data_frame, workflow_obj.get_data_frame_table_name(), dtype={ col.name: col.data_type for col in workflow_obj.columns.all() }, ) # Reconcile now the information in workflow and columns with # the one loaded workflow_obj.ncols = validated_data['ncols'] workflow_obj.nrows = validated_data['nrows'] workflow_obj.save() # Create the actions pointing to the workflow action_data = ActionSerializer(data=validated_data.get( 'actions', []), many=True, context={ 'workflow': workflow_obj, 'columns': columns }) if action_data.is_valid(): action_data.save() else: raise Exception(_('Unable to save column information')) # Create the views pointing to the workflow view_data = ViewSerializer(data=validated_data.get('views', []), many=True, context={ 'workflow': workflow_obj, 'columns': columns }) if view_data.is_valid(): view_data.save() else: raise Exception(_('Unable to save column information')) except Exception: # Get rid of the objects created if workflow_obj: if workflow_obj.id: workflow_obj.delete() raise return workflow_obj