def test_data(self): '''Test data from a data file''' print( "*******************************TESTDATA*************************") inputs = [] input_file = [self.bias, 7, 83, 78, 26, 71, 29.3, 0.767, 36] for i in input_file: inputs.append(round((float(i) / self.largest_data), 4)) d_output = 1 if self.algorithm == 0 or self.algorithm == 1: print( "The inputs to the network are {0} and the desired output is {1}" .format(inputs, d_output)) temp = np.matrix(inputs) weights = np.matrix(self.weights[0]).T print(temp, weights) product = np.dot(temp, weights) if self.algorithm == 0: activated = threshold_function(self.threshold, product.item()) else: activated = line_equation(product.item()) print( "The current weights and model outputs are {0} and {1} respectively" .format(weights, activated)) else: #backprop #loop thru each data input print( "The inputs to the network are {0} and the desired output is {1}" .format(inputs, d_output)) input_0 = np.matrix(inputs) output_0 = sigmoid_function(input_0) print("The outputs of the input layer are {0}".format(output_0)) weights = np.matrix(self.weights[0]).T input_1 = np.dot(weights, input_0.T) print("The inputs of the hidden layer are {0}".format(input_1)) output_1 = sigmoid_function(input_1) print("The outputs of the hidden layer are {0}.".format(output_1)) input_2 = np.dot(self.weights[1], output_1) print("The input to the output layer is {0}".format(input_2)) output_2 = sigmoid_function(input_2.item()) print("The output to the output layer is {0}".format(output_2))
def test(self): '''Test the model to check if it conforms to the standards''' #true class class_p = 1 class_n = 0 tp = 0 fn = 0 fp = 0 tn = 0 print("******************TESTING**************") for data in self.test_set: #loop thru each data input inputs = data[:-1] d_output = data[-1:][0] print( "The inputs to the network are {0} and the desired output is {1}" .format(inputs, d_output)) if self.algorithm == 0 or self.algorithm == 1: temp = np.matrix(inputs) weights = np.matrix(self.weights[0]).T product = np.dot(temp, weights) if self.algorithm == 0: m_output = threshold_function(self.threshold, product.item()) else: m_output = line_equation(product.item()) print("The models output is {0}".format(m_output)) else: input_0 = np.matrix(inputs) output_0 = line_equation(input_0) print( "The outputs of the input layer are {0}".format(output_0)) weights = np.matrix(self.weights[0]).T input_1 = np.dot(weights, input_0.T) print("The inputs of the hidden layer are {0}".format(input_1)) output_1 = sigmoid_function(input_1) print("The outputs of the hidden layer are {0}.".format( output_1)) input_2 = np.dot(self.weights[1], output_1) print("The input to the output layer is {0}".format(input_2)) m_output = sigmoid_function(input_2.item()) print("The output to the output layer is {0}".format(m_output)) if m_output == d_output == class_p: tp += 1 elif m_output == d_output == class_n: tn += 1 elif m_output == class_p and d_output == class_n: fp += 1 elif m_output == class_n and d_output == class_p: fn += 1 else: print("An error has occured") print("**********COMPLETE***************") print("Analysis....") recall = tp / (tp + fn) precision = tp / (tp + fp) f_score = (2 * (precision * recall)) / (precision + recall) print("The recall is: {0}".format(recall)) print("The precision is: {0}".format(precision)) print("The F-score is: {0}".format(f_score))
def backprop(self): ''' Backprop learning and training ''' x = 0 flag = True #infinite loop while flag: #repeat the epoch until there is a convergence print( '******************** Start of Epoch {0} ********************'. format(x)) errors = [] for data in self.normalized: #loop thru each data input inputs = data[:-1] d_output = data[-1:][0] print( "The inputs to the network are {0} and the desired output is {1}" .format(inputs, d_output)) input_0 = np.matrix(inputs) output_0 = line_equation(input_0) print( "The outputs of the input layer are {0}".format(output_0)) weights = np.matrix(self.weights[0]).T input_1 = np.dot(weights, input_0.T) print("The inputs of the hidden layer are {0}".format(input_1)) output_1 = sigmoid_function(input_1) print("The outputs of the hidden layer are {0}.".format( output_1)) input_2 = np.dot(self.weights[1], output_1) print("The input to the output layer is {0}".format(input_2)) output_2 = sigmoid_function(input_2.item()) print("The output to the output layer is {0}".format(output_2)) error = d_output - output_2 self.average_errors.append(error) errors.append(error * error) #calculate weight for the second weights d = (d_output - output_2) * output_2 * (1 - output_2) weight_change_w = self.learning_rate * d * output_1 #calculate weights for the first weights w = np.matrix(self.weights[1]).T * d a, b, g, h = (w[0].item(), w[1].item(), output_1[0].item(), output_1[1].item()) weight_change_v = [[a * g * (1 - g)], [b * h * (1 - h)]] weight_change_v = np.matrix(weight_change_v).T #update weights print("Updating weights.......") self.weights[0] = ((output_0.T * weight_change_v) * self.learning_rate) + self.weights[0] self.weights[1] = np.matrix( self.weights[1]).T + weight_change_w self.weights[1] = self.weights[1].T print("The updated weights are:") self.output_weights() print( '******************** End of Epoch {0} ********************'. format(x)) average_error = np.mean(errors) print("The average error is, {0}".format(average_error)) if round(average_error, 1) <= self.tolerance: print("The desired error tolerance has been achieved.") print("Exiting... ") flag = False break x += 1