예제 #1
0
def individual_utilities(
        persons,
        cdap_indiv_spec,
        locals_d,
        trace_hh_id=None, trace_label=None):
    """
    Calculate CDAP utilities for all individuals.

    Parameters
    ----------
    persons : pandas.DataFrame
        DataFrame of individual persons data.
    cdap_indiv_spec : pandas.DataFrame
        CDAP spec applied to individuals.

    Returns
    -------
    utilities : pandas.DataFrame
        Will have index of `persons` and columns for each of the alternatives.
        plus some 'useful columns' [_hh_id_, _ptype_, 'cdap_rank', _hh_size_]

    """

    # calculate single person utilities
    indiv_utils = simulate.eval_utilities(cdap_indiv_spec, persons, locals_d, trace_label=trace_label)

    # add columns from persons to facilitate building household interactions
    useful_columns = [_hh_id_, _ptype_, 'cdap_rank', _hh_size_]
    indiv_utils[useful_columns] = persons[useful_columns]

    if trace_hh_id:
        tracing.trace_df(indiv_utils, '%s.indiv_utils' % trace_label,
                         column_labels=['activity', 'person'])

    return indiv_utils
예제 #2
0
파일: cdap.py 프로젝트: UDST/activitysim
def individual_utilities(
        persons,
        cdap_indiv_spec,
        locals_d,
        trace_hh_id=None, trace_label=None):
    """
    Calculate CDAP utilities for all individuals.

    Parameters
    ----------
    persons : pandas.DataFrame
        DataFrame of individual persons data.
    cdap_indiv_spec : pandas.DataFrame
        CDAP spec applied to individuals.

    Returns
    -------
    utilities : pandas.DataFrame
        Will have index of `persons` and columns for each of the alternatives.
        plus some 'useful columns' [_hh_id_, _ptype_, 'cdap_rank', _hh_size_]

    """

    # calculate single person utilities
    indiv_utils = simulate.eval_utilities(cdap_indiv_spec, persons, locals_d, trace_label)

    # add columns from persons to facilitate building household interactions
    useful_columns = [_hh_id_, _ptype_, 'cdap_rank', _hh_size_]
    indiv_utils[useful_columns] = persons[useful_columns]

    if trace_hh_id:
        tracing.trace_df(indiv_utils, '%s.indiv_utils' % trace_label,
                         column_labels=['activity', 'person'])

    return indiv_utils
예제 #3
0
def compute_utilities(network_los,
                      model_settings,
                      choosers,
                      model_constants,
                      trace_label,
                      trace=False,
                      trace_column_names=None):
    """
    Compute utilities
    """
    with chunk.chunk_log(f'tvpb compute_utilities'):
        trace_label = tracing.extend_trace_label(trace_label, 'compute_utils')

        logger.debug(
            f"{trace_label} Running compute_utilities with {choosers.shape[0]} choosers"
        )

        locals_dict = {'np': np, 'los': network_los}
        locals_dict.update(model_constants)

        # we don't grok coefficients, but allow them to use constants in spec alt columns
        spec = simulate.read_model_spec(file_name=model_settings['SPEC'])
        for c in spec.columns:
            if c != simulate.SPEC_LABEL_NAME:
                spec[c] = spec[c].map(
                    lambda s: model_constants.get(s, s)).astype(float)

        with chunk.chunk_log(f'compute_utilities'):

            # - run preprocessor to annotate choosers
            preprocessor_settings = model_settings.get('PREPROCESSOR')
            if preprocessor_settings:

                # don't want to alter caller's dataframe
                choosers = choosers.copy()

                expressions.assign_columns(
                    df=choosers,
                    model_settings=preprocessor_settings,
                    locals_dict=locals_dict,
                    trace_label=trace_label)

            utilities = simulate.eval_utilities(
                spec,
                choosers,
                locals_d=locals_dict,
                trace_all_rows=trace,
                trace_label=trace_label,
                trace_column_names=trace_column_names)

    return utilities
예제 #4
0
def household_activity_choices(indiv_utils, interaction_coefficients, hhsize,
                               trace_hh_id=None, trace_label=None):
    """
    Calculate household utilities for each activity pattern alternative for households of hhsize
    The resulting activity pattern for each household will be coded as a string of activity codes.
    e.g. 'MNHH' for a 4 person household with activities Mandatory, NonMandatory, Home, Home

    Parameters
    ----------
    indiv_utils : pandas.DataFrame
        CDAP utilities for each individual, ignoring interactions
        ind_utils has index of _persons_index_ and a column for each alternative
        i.e. three columns 'M' (Mandatory), 'N' (NonMandatory), 'H' (Home)

    interaction_coefficients : pandas.DataFrame
        Rules and coefficients for generating interaction specs for different household sizes

    hhsize : int
        the size of household for which activity perttern should be calculated (1..MAX_HHSIZE)

    Returns
    -------
    choices : pandas.Series
        the chosen cdap activity pattern for each household represented as a string (e.g. 'MNH')
        with same index (_hh_index_) as utils

    """

    if hhsize == 1:
        # for 1 person households, there are no interactions to account for
        # and the household utils are the same as the individual utils
        choosers = vars = None
        # extract the individual utilities for individuals from hhsize 1 households
        utils = indiv_utils.loc[indiv_utils[_hh_size_] == 1, [_hh_id_, 'M', 'N', 'H']]
        # index on household_id, not person_id
        set_hh_index(utils)
    else:

        choosers = hh_choosers(indiv_utils, hhsize=hhsize)

        spec = build_cdap_spec(interaction_coefficients, hhsize,
                               trace_spec=(trace_hh_id in choosers.index),
                               trace_label=trace_label)

        utils = simulate.eval_utilities(spec, choosers, trace_label=trace_label)

    if len(utils.index) == 0:
        return pd.Series(dtype='float64')

    probs = logit.utils_to_probs(utils, trace_label=trace_label)

    # select an activity pattern alternative for each household based on probability
    # result is a series indexed on _hh_index_ with the (0 based) index of the column from probs
    idx_choices, rands = logit.make_choices(probs, trace_label=trace_label)

    # convert choice expressed as index into alternative name from util column label
    choices = pd.Series(utils.columns[idx_choices].values, index=utils.index)

    if trace_hh_id:

        if hhsize > 1:
            tracing.trace_df(choosers, '%s.hhsize%d_choosers' % (trace_label, hhsize),
                             column_labels=['expression', 'person'])

        tracing.trace_df(utils, '%s.hhsize%d_utils' % (trace_label, hhsize),
                         column_labels=['expression', 'household'])
        tracing.trace_df(probs, '%s.hhsize%d_probs' % (trace_label, hhsize),
                         column_labels=['expression', 'household'])
        tracing.trace_df(choices, '%s.hhsize%d_activity_choices' % (trace_label, hhsize),
                         column_labels=['expression', 'household'])
        tracing.trace_df(rands, '%s.hhsize%d_rands' % (trace_label, hhsize),
                         columns=[None, 'rand'])

    return choices
예제 #5
0
파일: cdap.py 프로젝트: UDST/activitysim
def household_activity_choices(indiv_utils, interaction_coefficients, hhsize,
                               trace_hh_id=None, trace_label=None):
    """
    Calculate household utilities for each activity pattern alternative for households of hhsize
    The resulting activity pattern for each household will be coded as a string of activity codes.
    e.g. 'MNHH' for a 4 person household with activities Mandatory, NonMandatory, Home, Home

    Parameters
    ----------
    indiv_utils : pandas.DataFrame
        CDAP utilities for each individual, ignoring interactions
        ind_utils has index of _persons_index_ and a column for each alternative
        i.e. three columns 'M' (Mandatory), 'N' (NonMandatory), 'H' (Home)

    interaction_coefficients : pandas.DataFrame
        Rules and coefficients for generating interaction specs for different household sizes

    hhsize : int
        the size of household for which activity perttern should be calculated (1..MAX_HHSIZE)

    Returns
    -------
    choices : pandas.Series
        the chosen cdap activity pattern for each household represented as a string (e.g. 'MNH')
        with same index (_hh_index_) as utils

    """

    if hhsize == 1:
        # for 1 person households, there are no interactions to account for
        # and the household utils are the same as the individual utils
        choosers = vars = None
        # extract the individual utilities for individuals from hhsize 1 households
        utils = indiv_utils.loc[indiv_utils[_hh_size_] == 1, [_hh_id_, 'M', 'N', 'H']]
        # index on household_id, not person_id
        set_hh_index(utils)
    else:

        choosers = hh_choosers(indiv_utils, hhsize=hhsize)

        spec = build_cdap_spec(interaction_coefficients, hhsize,
                               trace_spec=(trace_hh_id in choosers.index),
                               trace_label=trace_label)

        utils = simulate.eval_utilities(spec, choosers, trace_label=trace_label)

    if len(utils.index) == 0:
        return pd.Series()

    probs = logit.utils_to_probs(utils, trace_label=trace_label)

    # select an activity pattern alternative for each household based on probability
    # result is a series indexed on _hh_index_ with the (0 based) index of the column from probs
    idx_choices, rands = logit.make_choices(probs, trace_label=trace_label)

    # convert choice expressed as index into alternative name from util column label
    choices = pd.Series(utils.columns[idx_choices].values, index=utils.index)

    if trace_hh_id:

        if hhsize > 1:
            tracing.trace_df(choosers, '%s.hhsize%d_choosers' % (trace_label, hhsize),
                             column_labels=['expression', 'person'])

        tracing.trace_df(utils, '%s.hhsize%d_utils' % (trace_label, hhsize),
                         column_labels=['expression', 'household'])
        tracing.trace_df(probs, '%s.hhsize%d_probs' % (trace_label, hhsize),
                         column_labels=['expression', 'household'])
        tracing.trace_df(choices, '%s.hhsize%d_activity_choices' % (trace_label, hhsize),
                         column_labels=['expression', 'household'])
        tracing.trace_df(rands, '%s.hhsize%d_rands' % (trace_label, hhsize),
                         columns=[None, 'rand'])

    return choices