season, patch, array, coadd=coadd, mask_patch=mask_patch) n2d_sim = noise.get_n2d_data(sims, ivars2, emask, coadd_estimator=coadd, flattened=False, plot_fname=pout + "_n2d_sim" if (args.debug and i == 0) else None, dtype=dm.dtype) #n2d_sim = noise.get_n2d_data(sims,ivars2,emask,coadd_estimator=coadd,flattened=True,plot_fname=pout+"_n2d_sim" if (args.debug and i==0) else None,dtype = dm.dtype) del sims cents, op1ds_sim = noise.get_p1ds(n2d_sim, modlmap, bin_edges) p1ds.append(op1ds_sim.copy().reshape(-1)) p1dstats = stats.get_stats(np.array(p1ds)) #del covsqrt # For verification #splits = dm.get_splits(season=args.season,patch=args.patch,arrays=dm.array_freqs[args.array],srcfree=True) #splits = dm.get_splits(args.qid) splits = enmap.enmap([dm.get_splits(q) for q in qid]) #splits = np.expand_dims(splits,axis=0) if args.extract_mask is not None: splits = enmap.extract(splits, eshape, ewcs) n2d_data = noise.get_n2d_data(splits,
parser.add_argument("patch", type=str, help='Patch') args = parser.parse_args() bin_edges = np.arange(30, 10000, 100) dm = datamodel.NoiseModel(args.season, args.array, args.patch) pout = "%s%s_%s_%s_coadd_est_%s" % (datamodel.pout, args.season, args.array, args.patch, True) sout = "%s%s_%s_%s_coadd_est_%s" % (datamodel.paths['save'], args.season, args.array, args.patch, True) modlmap = dm.modlmap n2d_data = dm.get_n2d_data(dm.get_map(), coadd_estimator=True) corr = datamodel.corrcoef(n2d_data) cents, c1ds_data = datamodel.get_p1ds(corr, modlmap, bin_edges) dpi = 300 ncomps = c1ds_data.shape[0] if ncomps == 3: pols = ['150-I', '150-Q', '150-U'] elif ncomps == 6: pols = ['90-I', '90-Q', '90-U', '150-I', '150-Q', '150-U'] pl = io.Plotter(xlabel="$\\ell$", ylabel="$N_{XY}/\\sqrt{N_{XX}N_{YY}}$", xyscale='linlin') for i in range(c1ds_data.shape[0]): for j in range(i + 1, c1ds_data.shape[0]): polstring = "%s x %s" % (pols[i], pols[j]) pl.add(cents, c1ds_data[i, j], label=polstring)