ObjectSemanticNode, GROUND_OBJECT_CONCEPT, SemanticNode, ) from adam.utils.networkx_utils import subgraph from attr import attrib, attrs from attr.validators import deep_iterable, deep_mapping, instance_of from immutablecollections import ImmutableDict, ImmutableSet, immutabledict, immutableset from immutablecollections.converter_utils import _to_immutabledict, _to_immutableset from vistautils.span import Span _LIST_OF_PERCEIVED_PATTERNS = immutableset( ( node.handle, PerceptionGraphPattern.from_schema( first(GAILA_PHASE_1_ONTOLOGY.structural_schemata(node)), perception_generator=GAILA_PHASE_1_PERCEPTION_GENERATOR, ), ) for node in PHASE_1_CURRICULUM_OBJECTS if node in GAILA_PHASE_1_ONTOLOGY._structural_schemata.keys() # pylint:disable=protected-access ) @attrs(frozen=True, slots=True, auto_attribs=True) class PerceptionGraphFromObjectRecognizer: """ See `ObjectRecognizer.match_objects` """ perception_graph: PerceptionGraph description_to_matched_object_node: ImmutableDict[Tuple[ str, ...], ObjectSemanticNode] = attrib(converter=_to_immutabledict)
def do_object_on_table_test( object_type_to_match: OntologyNode, object_schema: ObjectStructuralSchema, negative_object_ontology_node: OntologyNode, ): """ Tests the `PerceptionGraphMatcher` can match simple objects. """ # we create four situations: # a object_to_match above or under a table with color red or blue color = color_variable("color") object_to_match = object_variable( debug_handle=object_type_to_match.handle, root_node=object_type_to_match, added_properties=[color], ) table = standard_object("table_0", TABLE) object_on_table_template = Phase1SituationTemplate( "object_to_match-on-table", salient_object_variables=[object_to_match, table], asserted_always_relations=[ bigger_than(table, object_to_match), on(object_to_match, table), ], ) object_under_table_template = Phase1SituationTemplate( "object_to_match-under-table", salient_object_variables=[object_to_match, table], asserted_always_relations=[ bigger_than(table, object_to_match), above(table, object_to_match), ], ) # We test that a perceptual pattern for "object_to_match" matches in all four cases. object_to_match_pattern = PerceptionGraphPattern.from_schema( object_schema, perception_generator=GAILA_PHASE_1_PERCEPTION_GENERATOR) situations_with_object_to_match = chain( all_possible_test(object_on_table_template), all_possible_test(object_under_table_template), ) for (_, situation_with_object) in enumerate(situations_with_object_to_match): perception = GAILA_PHASE_1_PERCEPTION_GENERATOR.generate_perception( situation_with_object, chooser=RandomChooser.for_seed(0)) perception_graph = PerceptionGraph.from_frame(perception.frames[0]) # perception_graph.render_to_file(f"object_to_match {idx}", out_dir / f"object_to_match # -{idx}.pdf") # object_to_match_pattern.render_to_file(f"object_to_match pattern", out_dir / # "object_to_match_pattern.pdf") matcher = object_to_match_pattern.matcher(perception_graph, match_mode=MatchMode.OBJECT) # debug_matching = matcher.debug_matching( # use_lookahead_pruning=False, render_match_to=Path("/Users/gabbard/tmp") # ) result = any(matcher.matches(use_lookahead_pruning=False)) if not result: return False # Now let's create the same situations, but substitute a negative_object for a object_to_match. negative_object = object_variable( debug_handle=negative_object_ontology_node.handle, root_node=negative_object_ontology_node, added_properties=[color], ) negative_object_on_table_template = Phase1SituationTemplate( "negative_object-on-table", salient_object_variables=[negative_object, table], asserted_always_relations=[ bigger_than(table, negative_object), on(negative_object, table), ], ) negative_object_under_table_template = Phase1SituationTemplate( "negative_object-under-table", salient_object_variables=[negative_object, table], asserted_always_relations=[ bigger_than(table, negative_object), above(table, negative_object), ], ) situations_with_negative_object = chain( all_possible_test(negative_object_on_table_template), all_possible_test(negative_object_under_table_template), ) # The pattern should now fail to match. for situation_with_negative_object in situations_with_negative_object: perception = GAILA_PHASE_1_PERCEPTION_GENERATOR.generate_perception( situation_with_negative_object, chooser=RandomChooser.for_seed(0)) perception_graph = PerceptionGraph.from_frame(perception.frames[0]) if any( object_to_match_pattern.matcher( perception_graph, match_mode=MatchMode.OBJECT).matches( use_lookahead_pruning=True)): return False return True