def train_and_evaluate_estimator():
    """Runs Estimator distributed training."""

    # The tf.estimator.RunConfig automatically parses the TF_CONFIG environment
    # variables during construction.
    # For more information on how tf.estimator.RunConfig uses TF_CONFIG, see
    # https://www.tensorflow.org/api_docs/python/tf/estimator/RunConfig.
    config = tf.estimator.RunConfig(tf_random_seed=42,
                                    model_dir=os.environ["MODEL_DIR"])
    head = tf.contrib.estimator.regression_head(
        loss_reduction=tf.losses.Reduction.SUM_OVER_BATCH_SIZE)

    subnetwork_generator = SimpleGenerator([
        _DNNBuilder("dnn1", config, layer_size=3),
        _DNNBuilder("dnn2", config, layer_size=4),
        _DNNBuilder("dnn3", config, layer_size=5),
    ])
    estimator = Estimator(
        head=head,
        subnetwork_generator=subnetwork_generator,
        max_iteration_steps=100,
        force_grow=True,
        delay_secs_per_worker=.2,
        max_worker_delay_secs=1,
        worker_wait_secs=.5,
        # Set low timeout to reduce wait time for failures.
        worker_wait_timeout_secs=60,
        config=config)

    def input_fn():
        xor_features = [[1., 0.], [0., 0], [0., 1.], [1., 1.]]
        xor_labels = [[1.], [0.], [1.], [0.]]
        input_features = {"x": tf.constant(xor_features, name="x")}
        input_labels = tf.constant(xor_labels, name="y")
        return input_features, input_labels

    # Train for three iterations.
    train_spec = tf.estimator.TrainSpec(input_fn=input_fn, max_steps=500)
    eval_spec = tf.estimator.EvalSpec(input_fn=input_fn, steps=1)

    # Calling train_and_evaluate is the official way to perform distributed
    # training with an Estimator. Calling Estimator#train directly results
    # in an error when the TF_CONFIG is setup for a cluster.
    tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
예제 #2
0
def train_and_evaluate_estimator():
  """Runs Estimator distributed training."""

  # The tf.estimator.RunConfig automatically parses the TF_CONFIG environment
  # variables during construction.
  # For more information on how tf.estimator.RunConfig uses TF_CONFIG, see
  # https://www.tensorflow.org/api_docs/python/tf/estimator/RunConfig.
  config = tf.estimator.RunConfig(
      tf_random_seed=42,
      save_checkpoints_steps=10,
      save_checkpoints_secs=None,
      # Keep all checkpoints to avoid checkpoint GC causing failures during
      # evaluation.
      # TODO: Prevent checkpoints that are currently being
      # evaluated by another process from being garbage collected.
      keep_checkpoint_max=None,
      model_dir=FLAGS.model_dir,
      session_config=tf_compat.v1.ConfigProto(
          log_device_placement=False,
          # Ignore other workers; only talk to parameter servers.
          # Otherwise, when a chief/worker terminates, the others will hang.
          device_filters=["/job:ps"]))

  def input_fn():
    input_features = {"x": tf.constant(features, name="x")}
    input_labels = tf.constant(labels, name="y")
    return tf.data.Dataset.from_tensors((input_features, input_labels)).repeat()

  kwargs = {
      "max_iteration_steps": 100,
      "force_grow": True,
      "delay_secs_per_worker": .2,
      "max_worker_delay_secs": 1,
      "worker_wait_secs": 1,
      # Set low timeout to reduce wait time for failures.
      "worker_wait_timeout_secs": 180,
      "evaluator": Evaluator(input_fn, steps=10),
      "config": config
  }

  head = head_lib._regression_head(  # pylint: disable=protected-access
      loss_reduction=tf.losses.Reduction.SUM_OVER_BATCH_SIZE)
  features = [[1., 0.], [0., 0], [0., 1.], [1., 1.]]
  labels = [[1.], [0.], [1.], [0.]]

  estimator_type = FLAGS.estimator_type
  if FLAGS.placement_strategy == "round_robin":
    kwargs["experimental_placement_strategy"] = RoundRobinStrategy()
  if estimator_type == "autoensemble":
    feature_columns = [tf.feature_column.numeric_column("x", shape=[2])]
    # pylint: disable=g-long-lambda
    # TODO: Switch optimizers to tf.keras.optimizers.Adam once the
    # distribution bug is fixed.
    candidate_pool = {
        "linear":
            tf.estimator.LinearEstimator(
                head=head,
                feature_columns=feature_columns,
                optimizer=lambda: tf_compat.v1.train.AdamOptimizer(
                    learning_rate=.001)),
        "dnn":
            tf.estimator.DNNEstimator(
                head=head,
                feature_columns=feature_columns,
                optimizer=lambda: tf_compat.v1.train.AdamOptimizer(
                    learning_rate=.001),
                hidden_units=[3]),
        "dnn2":
            tf.estimator.DNNEstimator(
                head=head,
                feature_columns=feature_columns,
                optimizer=lambda: tf_compat.v1.train.AdamOptimizer(
                    learning_rate=.001),
                hidden_units=[10, 10]),
    }
    # pylint: enable=g-long-lambda

    estimator = AutoEnsembleEstimator(
        head=head, candidate_pool=candidate_pool, **kwargs)
  elif estimator_type == "estimator":
    subnetwork_generator = SimpleGenerator([
        _DNNBuilder("dnn1", config, layer_size=3),
        _DNNBuilder("dnn2", config, layer_size=4),
        _DNNBuilder("dnn3", config, layer_size=5),
    ])

    estimator = Estimator(
        head=head, subnetwork_generator=subnetwork_generator, **kwargs)
  elif FLAGS.estimator_type == "autoensemble_trees_multiclass":
    if not bt_losses:
      logging.warning(
          "Skipped autoensemble_trees_multiclass test since contrib is missing."
      )
      return
    n_classes = 3
    head = head_lib._multi_class_head_with_softmax_cross_entropy_loss(  # pylint: disable=protected-access
        n_classes=n_classes,
        loss_reduction=tf.losses.Reduction.SUM_OVER_BATCH_SIZE)

    def tree_loss_fn(labels, logits):
      result = bt_losses.per_example_maxent_loss(
          labels=labels, logits=logits, num_classes=n_classes, weights=None)
      return result[0]

    tree_head = head_lib._multi_class_head_with_softmax_cross_entropy_loss(  # pylint: disable=protected-access
        loss_fn=tree_loss_fn,
        n_classes=n_classes,
        loss_reduction=tf.losses.Reduction.SUM_OVER_BATCH_SIZE)
    labels = [[1], [0], [1], [2]]
    feature_columns = [tf.feature_column.numeric_column("x", shape=[2])]
    # TODO: Switch optimizers to tf.keras.optimizers.Adam once the
    # distribution bug is fixed.
    candidate_pool = lambda config: {  # pylint: disable=g-long-lambda
        "linear":
            tf.estimator.LinearEstimator(
                head=head,
                feature_columns=feature_columns,
                optimizer=tf_compat.v1.train.AdamOptimizer(
                    learning_rate=.001),
                config=config),
        "gbdt":
            tf.estimator.BoostedTreesEstimator(
                head=tree_head,
                feature_columns=feature_columns,
                n_trees=10,
                n_batches_per_layer=1,
                center_bias=False,
                config=config),
    }

    estimator = AutoEnsembleEstimator(
        head=head, candidate_pool=candidate_pool, **kwargs)

  elif estimator_type == "estimator_with_experimental_multiworker_strategy":

    def _model_fn(features, labels, mode):
      """Test model_fn."""
      layer = tf.keras.layers.Dense(1)
      logits = layer(features["x"])

      if mode == tf.estimator.ModeKeys.PREDICT:
        predictions = {"logits": logits}
        return tf.estimator.EstimatorSpec(mode, predictions=predictions)

      loss = tf.losses.mean_squared_error(
          labels=labels,
          predictions=logits,
          reduction=tf.losses.Reduction.SUM_OVER_BATCH_SIZE)

      if mode == tf.estimator.ModeKeys.EVAL:
        return tf.estimator.EstimatorSpec(mode, loss=loss)

      if mode == tf.estimator.ModeKeys.TRAIN:
        optimizer = tf.train.GradientDescentOptimizer(0.2)
        train_op = optimizer.minimize(
            loss, global_step=tf.train.get_global_step())
        return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)

    if json.loads(os.environ["TF_CONFIG"])["task"]["type"] == "evaluator":
      # The evaluator job would crash if MultiWorkerMirroredStrategy is called.
      distribution = None
    else:
      distribution = tf.distribute.experimental.MultiWorkerMirroredStrategy()

    multiworker_config = tf.estimator.RunConfig(
        tf_random_seed=42,
        model_dir=FLAGS.model_dir,
        train_distribute=distribution,
        session_config=tf_compat.v1.ConfigProto(log_device_placement=False))
    # TODO: Replace with adanet.Estimator. Currently this just verifies
    # that the distributed testing framework supports distribute strategies.
    estimator = tf.estimator.Estimator(
        model_fn=_model_fn, config=multiworker_config)

  train_hooks = [
      tf.estimator.ProfilerHook(save_steps=50, output_dir=FLAGS.model_dir)
  ]
  # Train for three iterations.
  train_spec = tf.estimator.TrainSpec(
      input_fn=input_fn, max_steps=300, hooks=train_hooks)
  eval_spec = tf.estimator.EvalSpec(
      input_fn=input_fn, steps=1, start_delay_secs=.5, throttle_secs=.05)

  # Calling train_and_evaluate is the official way to perform distributed
  # training with an Estimator. Calling Estimator#train directly results
  # in an error when the TF_CONFIG is setup for a cluster.
  tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
예제 #3
0
def train_and_evaluate_estimator():
    """Runs Estimator distributed training."""

    # The tf.estimator.RunConfig automatically parses the TF_CONFIG environment
    # variables during construction.
    # For more information on how tf.estimator.RunConfig uses TF_CONFIG, see
    # https://www.tensorflow.org/api_docs/python/tf/estimator/RunConfig.
    config = tf.estimator.RunConfig(
        tf_random_seed=42,
        model_dir=FLAGS.model_dir,
        session_config=tf.ConfigProto(
            log_device_placement=False,
            # Ignore other workers; only talk to parameter servers.
            # Otherwise, when a chief/worker terminates, the others will hang.
            device_filters=["/job:ps"]))
    head = tf.contrib.estimator.regression_head(
        loss_reduction=tf.losses.Reduction.SUM_OVER_BATCH_SIZE)

    kwargs = {
        "max_iteration_steps": 100,
        "force_grow": True,
        "delay_secs_per_worker": .2,
        "max_worker_delay_secs": 1,
        "worker_wait_secs": .5,
        # Set low timeout to reduce wait time for failures.
        "worker_wait_timeout_secs": 60,
        "config": config
    }
    if FLAGS.estimator_type == "autoensemble":
        feature_columns = [tf.feature_column.numeric_column("x", shape=[2])]
        if hasattr(tf.estimator, "LinearEstimator"):
            linear_estimator_fn = tf.estimator.LinearEstimator
        else:
            linear_estimator_fn = tf.contrib.estimator.LinearEstimator
        if hasattr(tf.estimator, "DNNEstimator"):
            dnn_estimator_fn = tf.estimator.DNNEstimator
        else:
            dnn_estimator_fn = tf.contrib.estimator.DNNEstimator
        candidate_pool = {
            "linear":
            linear_estimator_fn(
                head=head,
                feature_columns=feature_columns,
                optimizer=tf.train.AdamOptimizer(learning_rate=.001)),
            "dnn":
            dnn_estimator_fn(
                head=head,
                feature_columns=feature_columns,
                optimizer=tf.train.AdamOptimizer(learning_rate=.001),
                hidden_units=[3]),
            "dnn2":
            dnn_estimator_fn(
                head=head,
                feature_columns=feature_columns,
                optimizer=tf.train.AdamOptimizer(learning_rate=.001),
                hidden_units=[5])
        }

        estimator = AutoEnsembleEstimator(head=head,
                                          candidate_pool=candidate_pool,
                                          **kwargs)

    elif FLAGS.estimator_type == "estimator":
        subnetwork_generator = SimpleGenerator([
            _DNNBuilder("dnn1", config, layer_size=3),
            _DNNBuilder("dnn2", config, layer_size=4),
            _DNNBuilder("dnn3", config, layer_size=5),
        ])

        estimator = Estimator(head=head,
                              subnetwork_generator=subnetwork_generator,
                              **kwargs)

    def input_fn():
        xor_features = [[1., 0.], [0., 0], [0., 1.], [1., 1.]]
        xor_labels = [[1.], [0.], [1.], [0.]]
        input_features = {"x": tf.constant(xor_features, name="x")}
        input_labels = tf.constant(xor_labels, name="y")
        return input_features, input_labels

    # Train for three iterations.
    train_spec = tf.estimator.TrainSpec(input_fn=input_fn, max_steps=300)
    eval_spec = tf.estimator.EvalSpec(input_fn=input_fn, steps=1)

    # Calling train_and_evaluate is the official way to perform distributed
    # training with an Estimator. Calling Estimator#train directly results
    # in an error when the TF_CONFIG is setup for a cluster.
    tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
def train_and_evaluate_estimator():
    """Runs Estimator distributed training."""

    # The tf.estimator.RunConfig automatically parses the TF_CONFIG environment
    # variables during construction.
    # For more information on how tf.estimator.RunConfig uses TF_CONFIG, see
    # https://www.tensorflow.org/api_docs/python/tf/estimator/RunConfig.
    config = tf.estimator.RunConfig(
        tf_random_seed=42,
        model_dir=FLAGS.model_dir,
        session_config=tf_compat.v1.ConfigProto(
            log_device_placement=False,
            # Ignore other workers; only talk to parameter servers.
            # Otherwise, when a chief/worker terminates, the others will hang.
            device_filters=["/job:ps"]))

    kwargs = {
        "max_iteration_steps": 100,
        "force_grow": True,
        "delay_secs_per_worker": .2,
        "max_worker_delay_secs": 1,
        "worker_wait_secs": .5,
        # Set low timeout to reduce wait time for failures.
        "worker_wait_timeout_secs": 60,
        "config": config
    }
    head = regression_head.RegressionHead(
        loss_reduction=tf_compat.SUM_OVER_BATCH_SIZE)
    features = [[1., 0.], [0., 0], [0., 1.], [1., 1.]]
    labels = [[1.], [0.], [1.], [0.]]
    if FLAGS.placement_strategy == "round_robin":
        kwargs["experimental_placement_strategy"] = RoundRobinStrategy()
    if FLAGS.estimator_type == "autoensemble":
        feature_columns = [tf.feature_column.numeric_column("x", shape=[2])]
        candidate_pool = {
            "linear":
            tf.estimator.LinearEstimator(
                head=head,
                feature_columns=feature_columns,
                optimizer=lambda: tf.keras.optimizers.Adam(lr=.001)),
            "dnn":
            tf.estimator.DNNEstimator(
                head=head,
                feature_columns=feature_columns,
                optimizer=lambda: tf.keras.optimizers.Adam(lr=.001),
                hidden_units=[3]),
            "dnn2":
            tf.estimator.DNNEstimator(
                head=head,
                feature_columns=feature_columns,
                optimizer=lambda: tf.keras.optimizers.Adam(lr=.001),
                hidden_units=[5]),
        }

        estimator = AutoEnsembleEstimator(head=head,
                                          candidate_pool=candidate_pool,
                                          **kwargs)
    elif FLAGS.estimator_type == "estimator":
        subnetwork_generator = SimpleGenerator([
            _DNNBuilder("dnn1", config, layer_size=3),
            _DNNBuilder("dnn2", config, layer_size=4),
            _DNNBuilder("dnn3", config, layer_size=5),
        ])

        estimator = Estimator(head=head,
                              subnetwork_generator=subnetwork_generator,
                              **kwargs)
    elif FLAGS.estimator_type == "autoensemble_trees_multiclass":
        n_classes = 3
        head = multi_class_head.MultiClassHead(
            n_classes=n_classes, loss_reduction=tf_compat.SUM_OVER_BATCH_SIZE)

        def tree_loss_fn(labels, logits):
            result = bt_losses.per_example_maxent_loss(labels=labels,
                                                       logits=logits,
                                                       num_classes=n_classes,
                                                       weights=None)
            return result[0]

        tree_head = multi_class_head.MultiClassHead(
            loss_fn=tree_loss_fn,
            n_classes=n_classes,
            loss_reduction=tf_compat.SUM_OVER_BATCH_SIZE)
        labels = [[1], [0], [1], [2]]
        feature_columns = [tf.feature_column.numeric_column("x", shape=[2])]
        candidate_pool = lambda config: {  # pylint: disable=g-long-lambda
            "linear":
                tf.estimator.LinearEstimator(
                    head=head,
                    feature_columns=feature_columns,
                    optimizer=tf.keras.optimizers.Adam(lr=.001),
                    config=config),
            "gbdt":
                CoreGradientBoostedDecisionTreeEstimator(
                    head=tree_head,
                    learner_config=learner_pb2.LearnerConfig(num_classes=n_classes),
                    examples_per_layer=8,
                    num_trees=None,
                    center_bias=False,  # Required for multi-class.
                    feature_columns=feature_columns,
                    config=config),
        }

        estimator = AutoEnsembleEstimator(head=head,
                                          candidate_pool=candidate_pool,
                                          **kwargs)

    def input_fn():
        input_features = {"x": tf.constant(features, name="x")}
        input_labels = tf.constant(labels, name="y")
        return input_features, input_labels

    train_hooks = [
        tf.estimator.ProfilerHook(save_steps=50, output_dir=FLAGS.model_dir)
    ]
    # Train for three iterations.
    train_spec = tf.estimator.TrainSpec(input_fn=input_fn,
                                        max_steps=300,
                                        hooks=train_hooks)
    eval_spec = tf.estimator.EvalSpec(input_fn=input_fn,
                                      steps=1,
                                      start_delay_secs=.5,
                                      throttle_secs=.5)

    # Calling train_and_evaluate is the official way to perform distributed
    # training with an Estimator. Calling Estimator#train directly results
    # in an error when the TF_CONFIG is setup for a cluster.
    tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
예제 #5
0
    def test_summaries(self):
        """Tests that summaries are written to candidate directory."""

        run_config = tf.estimator.RunConfig(tf_random_seed=42,
                                            log_step_count_steps=2,
                                            save_summary_steps=2,
                                            model_dir=self.test_subdirectory)
        subnetwork_generator = SimpleGenerator([_SimpleBuilder("dnn")])
        report_materializer = ReportMaterializer(input_fn=tu.dummy_input_fn(
            [[1., 1.]], [[0.]]),
                                                 steps=1)
        estimator = Estimator(head=regression_head.RegressionHead(
            loss_reduction=tf_compat.SUM_OVER_BATCH_SIZE),
                              subnetwork_generator=subnetwork_generator,
                              report_materializer=report_materializer,
                              max_iteration_steps=10,
                              config=run_config)
        train_input_fn = tu.dummy_input_fn([[1., 0.]], [[1.]])
        estimator.train(input_fn=train_input_fn, max_steps=3)

        ensemble_loss = 1.52950
        self.assertAlmostEqual(ensemble_loss,
                               tu.check_eventfile_for_keyword(
                                   "loss", self.test_subdirectory),
                               places=3)
        self.assertIsNotNone(
            tu.check_eventfile_for_keyword("global_step/sec",
                                           self.test_subdirectory))
        self.assertEqual(
            0.,
            tu.check_eventfile_for_keyword("iteration/adanet/iteration",
                                           self.test_subdirectory))

        subnetwork_subdir = os.path.join(self.test_subdirectory,
                                         "subnetwork/t0_dnn")
        self.assertAlmostEqual(3.,
                               tu.check_eventfile_for_keyword(
                                   "scalar", subnetwork_subdir),
                               places=3)
        self.assertEqual(
            (3, 3, 1),
            tu.check_eventfile_for_keyword("image", subnetwork_subdir))
        self.assertAlmostEqual(5.,
                               tu.check_eventfile_for_keyword(
                                   "nested/scalar", subnetwork_subdir),
                               places=3)

        ensemble_subdir = os.path.join(
            self.test_subdirectory,
            "ensemble/t0_dnn_grow_complexity_regularized")
        self.assertAlmostEqual(
            ensemble_loss,
            tu.check_eventfile_for_keyword(
                "adanet_loss/adanet/adanet_weighted_ensemble",
                ensemble_subdir),
            places=1)
        self.assertAlmostEqual(
            0.,
            tu.check_eventfile_for_keyword(
                "complexity_regularization/adanet/adanet_weighted_ensemble",
                ensemble_subdir),
            places=3)
        self.assertAlmostEqual(1.,
                               tu.check_eventfile_for_keyword(
                                   "mixture_weight_norms/adanet/"
                                   "adanet_weighted_ensemble/subnetwork_0",
                                   ensemble_subdir),
                               places=3)