def stepDetection(dataSet): xs = [] ys = [] zs = [] timestamps = [] headings = [] for data in dataSet: xs.append(data[1]) ys.append(data[2]) zs.append(data[3]) timestamps.append(data[0]) headings.append(data[4]) x,y,z,timestamps,headings = np.array(xs), np.array(ys),np.array(zs), np.array(timestamps), np.array(headings) # Filter Params order = 3 fs = 50.0 # sample rate, Hz cutoff = 3.667 # desired cutoff frequency of the filter, Hz lowPassX = lpf.butter_lowpass_filter(x,cutoff,fs,order) peaks,troughs,average, headingMovedX = ajpb.adaptive_jerk_pace_buffer(lowPassX, timestamps, headings) lowPassY = lpf.butter_lowpass_filter(y,cutoff,fs,order) peaks,troughs,average, headingMovedY = ajpb.adaptive_jerk_pace_buffer(lowPassY, timestamps, headings) lowPassZ = lpf.butter_lowpass_filter(z,cutoff,fs,order) peaks,troughs,average, headingMovedZ = ajpb.adaptive_jerk_pace_buffer(lowPassZ, timestamps, headings) print("X: ",headingMovedX) print("Y: ",headingMovedY) print("Z: ",headingMovedZ) return headingMovedY
import adaptiveJerkPaceBuffer as ajpb import lowPassFilter as lpf import math import numpy as np import json f = open("accel.json", "r") values = json.load(f) f.close() x = [] timestamps = [] for val in values: timestamps.append(val[0]) x.append(val[3]) #Change the axis where values are used timestamps = np.array(timestamps) x = np.array(x) # Filter Params order = 3 fs = 50.0 # sample rate, Hz cutoff = 3.667 # desired cutoff frequency of the filter, Hz lowPassR = lpf.butter_lowpass_filter(x,cutoff,fs,order) peaks,troughs,average = ajpb.adaptive_jerk_pace_buffer(lowPassR, timestamps) print("No of steps: %d" %len(troughs))
crossings = pat.peak_accel_threshold(r, timestamps, 10.5) # print "Peak Acceleration Threshold Steps:", len(crossings)/2 pat_sum = pat_sum + len(crossings)/2 # Peak Jerk Threshold jumps, zeroes = sjt.step_jerk_threshold(r, timestamps) # print "Step Jerk Threshold Steps:", len(jumps) pjt_sum = pjt_sum + len(jumps) # Adaptive Step Jerk Threshold jumps, avgs = asjt.adaptive_step_jerk_threshold(r, timestamps) # print "Adaptive Step Jerk Threshold Steps:", len(jumps) # print "Final Step Jerk Average:", avgs[-1][1] apjt_sum = apjt_sum + len(jumps) peaks, troughs, avgs = ajpb.adaptive_jerk_pace_buffer(r, timestamps) # print "Adaptive Step Jerk Pace Buffer Steps:", len(troughs) ajpb_sum = ajpb_sum + len(peaks) #Android Steps a_steps = android_steps(trial) # print "Android Steps:", a_steps andr_sum = andr_sum + a_steps trial_count = trial_count + 1 print "Peak Acceleration Average:", pat_sum/trial_count, pat_sum, trial_count print "Step Jerk Average:", pjt_sum/trial_count, pjt_sum, trial_count print "Adaptive Step Jerk Average:",apjt_sum/trial_count, apjt_sum, trial_count print "Adaptive Jerk Pace Buffer Average:",ajpb_sum/trial_count, ajpb_sum, trial_count print "Android Steps:", andr_sum/trial_count, andr_sum, trial_count
crossings = pat.peak_accel_threshold(r, timestamps, 10.5) # print "Peak Acceleration Threshold Steps:", len(crossings)/2 pat_sum = pat_sum + len(crossings) / 2 # Peak Jerk Threshold jumps, zeroes = sjt.step_jerk_threshold(r, timestamps) # print "Step Jerk Threshold Steps:", len(jumps) pjt_sum = pjt_sum + len(jumps) # Adaptive Step Jerk Threshold jumps, avgs = asjt.adaptive_step_jerk_threshold(r, timestamps) # print "Adaptive Step Jerk Threshold Steps:", len(jumps) # print "Final Step Jerk Average:", avgs[-1][1] apjt_sum = apjt_sum + len(jumps) peaks, troughs, avgs = ajpb.adaptive_jerk_pace_buffer( r, timestamps) # print "Adaptive Step Jerk Pace Buffer Steps:", len(troughs) ajpb_sum = ajpb_sum + len(peaks) #Android Steps a_steps = android_steps(trial) # print "Android Steps:", a_steps andr_sum = andr_sum + a_steps trial_count = trial_count + 1 print "Peak Acceleration Average:", pat_sum / trial_count, pat_sum, trial_count print "Step Jerk Average:", pjt_sum / trial_count, pjt_sum, trial_count print "Adaptive Step Jerk Average:", apjt_sum / trial_count, apjt_sum, trial_count print "Adaptive Jerk Pace Buffer Average:", ajpb_sum / trial_count, ajpb_sum, trial_count print "Android Steps:", andr_sum / trial_count, andr_sum, trial_count