예제 #1
0
        ObsKey = str
        ActionKey = str

        :param obs: Dict[ObsKey, torch.Tensor]
        :return: Dict[ActionKey, np.ndarray]
        """
        pass

    def act_eval(self, obs):
        """
        Generate an action in an evaluation.

        ObsKey = str
        ActionKey = str

        :param obs: Dict[ObsKey, torch.Tensor]
        :return: Dict[ActionKey, np.ndarray]
        """
        pass


if __name__ == "__main__":
    args = parse_args()
    agent_reg = AgentRegistry()
    agent_reg.register_agent(MyCustomAgent)

    main(args, agent_registry=agent_reg)

    # Call script like this to train agent:
    # python -m custom_agent_stub.py --agent MyCustomAgent
예제 #2
0
        """
        pass

    def reset(self, **kwargs):
        """
        Reset environment.

        ObsKey = str

        :param kwargs:
        :return: Dict[ObsKey, Any] Observation dictionary
        """
        pass

    def close(self):
        """
        Close any connections / resources.

        :return:
        """
        pass


if __name__ == "__main__":
    env_reg = EnvRegistry()
    env_reg.register_env(MyCustomEnv, ["scenario1", "scenario2"])
    main(parse_args(), env_registry=env_reg)

    # Call script like this to train agent:
    # python -m custom_env_stub.py --env scenario1
예제 #3
0
    def new_internals(self, device):
        """
        Define any initial hidden states here, move them to device if necessary.
        InternalKey=str
        :return: Dict[InternalKey, torch.Tensor (ND)]
        """
        pass

    def forward(self, observation, internals):
        """
        Compute forward pass.
        ObsKey = str
        InternalKey = str
        :param observation: Dict[ObsKey, torch.Tensor (1D | 2D | 3D | 4D)]
        :param internals: Dict[InternalKey, torch.Tensor (ND)]
        :return: torch.Tensor
        """
        pass


if __name__ == "__main__":
    args = parse_args()
    network_reg = NetworkRegistry()
    network_reg.register_network(MyCustomNetwork)

    main(args, net_registry=network_reg)

    # Call script like this to train agent:
    # python -m custom_network_stub.py --custom-network MyCustomNetwork
        pass

    def reset(self, **kwargs):
        """
        Reset environment.

        ObsKey = str

        :param kwargs:
        :return: Dict[ObsKey, Any] Observation dictionary
        """
        pass

    def close(self):
        """
        Close any connections / resources.

        :return:
        """
        pass


if __name__ == "__main__":
    import adept

    adept.register_env(MyCustomEnv)
    main(parse_args())

    # Call script like this to train agent:
    # python -m custom_env_stub.py --env scenario1