def __init__(self, model=None, training_instances=None): learner.__init__(self) if model: self.set_model(model) else: self.model = None self.training_instances = training_instances
def __init__(self, base_model=None, training_instances=None, attacker=None, params: Dict = None): learner.__init__(self) self.model = Model(base_model) # self.attack_alg = None # Type: class # self.adv_params = None self.attacker = attacker # Type: Adversary self.set_training_instances(training_instances) self.iteration_times = 5 # int: control the number of rounds directly
def __init__(self, params=None, training_instances=None): learner.__init__(self) self.weight_vector = None self.bias = 0 self.c_delta = 0.5 if params is not None: self.set_params(params) if training_instances is not None: self.set_training_instances(training_instances)
def __init__(self, training_instances=None, params=None): learner.__init__(self) self.weight_vector = None # type: np.array(shape=(1)) self.num_features = 0 # type: int self.hinge_loss_multiplier = 0.5 # type: float self.max_feature_deletion = 30 # type: int self.bias = 0 # type: int if params is not None: self.set_params(params) if training_instances is not None: self.set_training_instances(training_instances)
def __init__(self, training_instances: List[Instance], n: int, lda=0.1, verbose=False): """ :param training_instances: the instances on which to train :param n: the number of unpoisoned instances in training_instances - the size of the original dataset :param lda: lambda - for regularization term :param verbose: if True, the solver will be in verbose mode """ learner.__init__(self) self.training_instances = training_instances self.n = n self.lda = lda # lambda self.verbose = verbose self.num_features = self.training_instances[0].get_feature_count() self.w = None self.b = None
def __init__(self): learner.__init__(self) raise NotImplementedError