예제 #1
0
파일: VLSR.py 프로젝트: teuben/admit
 def __init__(self, upper=True):
     self.version = "27-apr-2016"
     if have_ADMIT:
         self.table = utils.admit_root() + "/etc/vlsr.tab"
         self.cat = read_vlsr(self.table,upper)
         logging.debug("VLSR: %s, found %d entries" % (self.table,len(self.cat)))
     else:
         logging.warning("VLSR: Warning, no ADMIT, empty catalogue")
         self.cat = {}
예제 #2
0
파일: PVSlice_AT.py 프로젝트: teuben/admit
def tab_to_slit(xym, clip=0.0, gamma=1.0):
    """take all values from a map over clip, compute best slit for PV Slice
    """
    x = xym[0]   # maxposx
    y = xym[1]   # maxposy
    m = xym[2]   # max

    logging.debug("CLIP %g" % clip)

    slit = convert_to_slit(m,x,y,0,0,gamma,expand=2.0)
    return (slit,clip)
예제 #3
0
def peakstats(image, freq, sigma, nsigma, minchan, maxgap, psample, peakfit = False):
    """ Go through a cube and find peaks in the spectral dimension

    It will gather a table of <peak>,<freq>,<sigma> which can be
    optionally used for plotting
    """
    if psample < 0: return
    cutoff = nsigma * sigma
    madata = casautil.getdata(image)
    data   = madata.data
    shape  = data.shape
    logging.debug("peakstats: shape=%s cutoff=%g" % (str(shape),cutoff))
    #print "DATA SHAPE:",shape
    #print "cutoff=",cutoff
    nx = shape[0]
    ny = shape[1]
    nz = shape[2]
    chan = np.arange(nz)
    # prepare the segment finder
    # we now have an array data[nx,ny,nz]
    sum = 0.0
    pval = []
    mval = []
    wval = []
    for x in range(0,nx,psample):
        for y in range(0,ny,psample):
            s0    = data[x,y,:]
            spec  = ma.masked_invalid(s0)
            sum += spec.sum()
            # using abs=True is a bit counter intuitive, but a patch to deal with the confusion in
            # ADMITSegmentFinder w.r.t abs usage
            asf = ADMITSegmentFinder(pmin=nsigma, minchan=minchan, maxgap=maxgap, freq=freq, spec=spec, abs=True)
            #asf = ADMITSegmentFinder(pmin=nsigma, minchan=minchan, maxgap=maxgap, freq=freq, spec=spec, abs=False)
            f = asf.line_segments(spec, nsigma*sigma)
            for s in f:
                if False:
                    for i in range(s[0],s[1]+1):
                        print "# ",x,y,i,spec[i]
                ## area preserving and peak are correlated, 18% difference
                ## fitgauss1Dm was about 5"
                ## with fitgauss1D was about 30", and still bad fits
                par      = utils.fitgauss1Dm(chan[s[0]:s[1]+1], spec[s[0]:s[1]+1], True)           # peak from max
                #par      = utils.fitgauss1Dm(chan[s[0]:s[1]+1], spec[s[0]:s[1]+1], False)       # peak from area preserving
                if peakfit:
                    (par,cov) = utils.fitgauss1D (chan[s[0]:s[1]+1], spec[s[0]:s[1]+1],par)
                #print "FIND:  ",x,y,s,cutoff,0.0,0.0,par[0],par[1],par[2],s[1]-s[0]+1
                pval.append(par[0])
                mval.append(par[1])
                wval.append(par[2])
    #print "SUM:",sum
    return (np.array(pval),np.array(mval),np.array(wval))
예제 #4
0
    def test_debug(self):
        msg = "unit_test_debug_message"
        Alogging.debug(msg)
 
        found = False
        r = open(self.logfile, 'r')
        for line in r.readlines():
            if msg in line:
                if(self.verbose):
                    print "\nFound message > ", line
                found = True
                r.close()
                break
 
        self.assertTrue(found)
예제 #5
0
    def run(self):
        """ The run method creates the BDP

            Parameters
            ----------
            None

            Returns
            -------
            None
        """
        self._summary = {}
        dt = utils.Dtime("Smooth")
        dt.tag("start")
        # get the input keys
        bmaj = self.getkey("bmaj")
        bmin = self.getkey("bmin")
        bpa = self.getkey("bpa")
        velres = self.getkey("velres")

        # take care of potential issues in the unit strings
        # @todo  if not provided?
        bmaj['unit'] = bmaj['unit'].lower()
        bmin['unit'] = bmin['unit'].lower()
        velres['unit'] = velres['unit'].lower()
        taskargs = "bmaj=%s bmin=%s bpa=%s velres=%s" % (bmaj, bmin, bpa,
                                                         velres)

        bdpnames = []
        for ibdp in self._bdp_in:
            istem = ibdp.getimagefile(bt.CASA)
            image_in = ibdp.baseDir() + istem

            bdp_name = self.mkext(istem, 'sim')
            image_out = self.dir(bdp_name)

            taskinit.ia.open(image_in)
            h = casa.imhead(image_in, mode='list')
            pix_scale = np.abs(h['cdelt1'] *
                               206265.0)  # pix scale in asec @todo QA ?
            CC = 299792458.0  # speed of light  @todo somewhere else   [utils.c , but in km/s]

            rest_freq = h['crval3']
            # frequency pixel scale in km/s
            vel_scale = np.abs(CC * h['cdelt3'] / rest_freq / 1000.0)

            # unit conversion to arcsec (spatial) or km/s
            # (velocity) or some flavor of Hz.

            if (bmaj['unit'] == 'pixel'):
                bmaj = bmaj['value'] * pix_scale
            else:
                bmaj = bmaj['value']
            if (bmin['unit'] == 'pixel'):
                bmin = bmin['value'] * pix_scale
            else:
                bmin = bmin['value']

            hertz_input = False
            if velres['unit'] == 'pixel':
                velres['value'] = velres['value'] * vel_scale
                velres['unit'] = 'km/s'
            elif velres['unit'] == 'm/s':
                velres['value'] = velres['value'] / 1000.0
                velres['unit'] = 'km/s'
            elif velres['unit'][-2:] == 'hz':
                hertz_input = True
            elif velres['unit'] == 'km/s':
                pass
            else:
                logging.error("Unknown units in velres=%s" % velres['unit'])

            rdata = bmaj

            # we smooth in velocity first. if smoothing in velocity
            # the cube apparently must be closed afterwards and
            # then reopened if spatial smoothing is to be done.

            if velres['value'] > 0:
                # handle the different units allowed. CASA doesn't
                # like lowercase for hz units...
                if not hertz_input:
                    freq_res = str(
                        velres['value'] * 1000.0 / CC * rest_freq) + 'Hz'
                else:
                    freq_res = str(velres['value'])
                    # try to convert velres to km/s for debug purposes
                    velres['value'] = velres['value'] / rest_freq * CC / 1000.0
                    if (velres['unit'] == 'khz'):
                        velres['value'] = velres['value'] * 1000.0
                        velres['unit'] = 'kHz'
                    elif (velres['unit'] == 'mhz'):
                        velres['value'] = velres['value'] * 1E6
                        velres['unit'] = 'MHz'
                    elif (velres['unit'] == 'ghz'):
                        velres['value'] = velres['value'] * 1E9
                        velres['unit'] = 'GHz'
                    freq_res = freq_res + velres['unit']

                # NB: there is apparently a bug in CASA. only smoothing along the frequency
                # axis does not work. sepconvolve gives a unit error (says axis unit is radian rather
                # than Hz). MUST smooth in 2+ dimensions if you want this to work.

                if (velres['value'] < vel_scale):
                    raise Exception, "Desired velocity resolution %g less than pixel scale %g" % (
                        velres['value'], vel_scale)
                image_tmp = self.dir('tmp.smooth')
                im2=taskinit.ia.sepconvolve(outfile=image_tmp,axes=[0,1,2], types=["boxcar","boxcar","gauss"],\
                                              widths=['1pix','1pix',freq_res], overwrite=True)
                im2.done()
                logging.debug("sepconvolve to %s" % image_out)
                # for some reason, doing this in memory does not seem to work, so outfile must be specified.

                logging.info(
                    "Smoothing cube to a velocity resolution of %s km/s" %
                    str(velres['value']))
                logging.info("Smoothing cube to a frequency resolution of %s" %
                             freq_res)
                taskinit.ia.close()
                taskinit.ia.open(image_tmp)
                dt.tag("sepconvolve")
            else:
                image_tmp = image_out

            # now do the spatial smoothing

            convolve_to_min_beam = True  # default is to convolve to a min enclosing beam

            if bmaj > 0 and bmin > 0:
                # form qa objects out of these so that casa can understand
                bmaj = taskinit.qa.quantity(bmaj, 'arcsec')
                bmin = taskinit.qa.quantity(bmin, 'arcsec')
                bpa = taskinit.qa.quantity(bpa, 'deg')

                target_res = {}
                target_res['major'] = bmaj
                target_res['minor'] = bmin
                target_res['positionangle'] = bpa

                # throw an exception if cannot be convolved

                try:
                    # for whatever reason, if you give convolve2d a beam parameter,
                    # it complains ...
                    im2=taskinit.ia.convolve2d(outfile=image_out,major = bmaj,\
                                             minor = bmin, pa = bpa,\
                                             targetres=True,overwrite=True)
                    im2.done()
                    logging.info(
                        "Smoothing cube to a resolution of %s by %s at a PA of %s"
                        % (str(bmaj['value']), str(
                            bmin['value']), str(bpa['value'])))
                    convolve_to_min_beam = False
                    achieved_res = target_res
                except:
                    # @todo   remind what you need ?
                    logging.error("Warning: Could not convolve to requested resolution of "\
                            +str(bmaj['value']) + " by " + str(bmin['value']) + \
                            " at a PA of "+ str(bpa['value']))
                    raise Exception, "Could not convolve to beam given!"
            dt.tag("convolve2d-1")

            if convolve_to_min_beam:
                restoring_beams = taskinit.ia.restoringbeam()
                commonbeam = taskinit.ia.commonbeam()
                # for whatever reason, setrestoringbeam does not use the same set of hashes...
                commonbeam['positionangle'] = commonbeam['pa']
                del commonbeam['pa']

                # if there's one beam, apparently the beams keyword does not exist
                if 'beams' in restoring_beams:
                    print "Smoothing cube to a resolution of "+  \
                         str(commonbeam['major']['value']) +" by "+ \
                         str(commonbeam['minor']['value'])+" at a PA of "\
                        +str(commonbeam['pa']['value'])
                    target_res = commonbeam
                    im2=taskinit.ia.convolve2d(outfile=image_out,major=commonbeam['major'],\
                                               minor=commonbeam['minor'],\
                                               pa=commonbeam['positionangle'],\
                                               targetres=True,overwrite=True)
                    im2.done()
                    achieved_res = commonbeam
                    dt.tag("convolve2d-2")
                else:
                    print "One beam for all planes. Smoothing to common beam redundant."
                    achieved_res = commonbeam
                    if velres['value'] < 0:
                        taskinit.ia.fromimage(outfile=image_out,
                                              infile=image_in)
                    # not really doing anything
                # else, we've already done what we needed to

                taskinit.ia.setrestoringbeam(beam=achieved_res)
                rdata = achieved_res['major']['value']

            # else do no smoothing and just close the image

            taskinit.ia.close()
            dt.tag("close")

            b1 = SpwCube_BDP(bdp_name)
            self.addoutput(b1)
            # need to update for multiple images.

            b1.setkey("image", Image(images={bt.CASA: bdp_name}))

            bdpnames = bdpnames.append(bdp_name)

            # and clean up the temp image before the next image
            if velres['value'] > 0:
                utils.remove(image_tmp)

        # thes are task arguments not summary entries.
        _bmaj = taskinit.qa.convert(achieved_res['major'], 'rad')['value']
        _bmin = taskinit.qa.convert(achieved_res['minor'], 'rad')['value']
        _bpa = taskinit.qa.convert(achieved_res['positionangle'],
                                   'deg')['value']
        vres = "%.2f %s" % (velres['value'], velres['unit'])

        logging.regression("SMOOTH: %f %f" % (rdata, velres['value']))

        self._summary["smooth"] = SummaryEntry(
            [bdp_name, convolve_to_min_beam, _bmaj, _bmin, _bpa, vres],
            "Smooth_AT", self.id(True), taskargs)
        dt.tag("done")
        dt.end()
예제 #6
0
    def run(self):
        """Runs the task.

           Parameters
           ----------
           None

           Returns
           -------
           None
        """

        self._summary = {}
        dt = utils.Dtime("CubeStats")

        #maxvrms = 2.0      # maximum variation in rms allowed (hardcoded for now)
        #maxvrms = -1.0     # turn maximum variation in rms allowed off
        maxvrms = self.getkey("maxvrms")

        psample = -1
        psample = self.getkey("psample")        

        # BDP's used :
        #   b1 = input BDP
        #   b2 = output BDP

        b1 = self._bdp_in[0]
        fin = b1.getimagefile(bt.CASA)

        bdp_name = self.mkext(fin,'cst')
        b2 = CubeStats_BDP(bdp_name)
        self.addoutput(b2)

        # PeakPointPlot 
        use_ppp = self.getkey("ppp")

        # peakstats: not enabled for mortal users yet
        # peakstats = (psample=1, numsigma=4, minchan=3, maxgap=2, peakfit=False)
        pnumsigma = 4
        minchan   = 3
        maxgap    = 2
        peakfit   = False             # True will enable a true gaussian fit
        
        # numsigma:  adding all signal > numsigma ; not user enabled;   for peaksum.
        numsigma = -1.0
        numsigma = 3.0

        # grab the new robust statistics. If this is used, 'rms' will be the RMS,
        # else we will use RMS = 1.4826*MAD (MAD does a decent job on outliers as well)
        # and was the only method available before CASA 4.4 when robust was implemented
        robust = self.getkey("robust")
        rargs = casautil.parse_robust(robust)
        nrargs = len(rargs)

        if nrargs == 0:
           sumrargs = "medabsdevmed"      # for the summary, indicate the default robust
        else:
           sumrargs = str(rargs)

        self._summary["rmsmethd"] = SummaryEntry([sumrargs,fin],"CubeStats_AT",self.id(True))
        #@todo think about using this instead of putting 'fin' in all the SummaryEntry
        #self._summary["casaimage"] = SummaryEntry(fin,"CubeStats_AT",self.id(True))

        # extra CASA call to get the freq's in GHz, as these are not in imstat1{}
        # @todo what if the coordinates are not in FREQ ?
        # Note: CAS-7648 bug on 3D cubes
        if False:
            # csys method
            ia.open(self.dir(fin))
            csys = ia.coordsys() 
            spec_axis = csys.findaxisbyname("spectral") 
            # ieck, we need a valid position, or else it will come back and "Exception: All selected pixels are masked"
            #freqs = ia.getprofile(spec_axis, region=rg.box([0,0],[0,0]))['coords']/1e9
            #freqs = ia.getprofile(spec_axis)['coords']/1e9
            freqs = ia.getprofile(spec_axis,unit="GHz")['coords']
            dt.tag("getprofile")
        else:
            # old imval method 
            #imval0 = casa.imval(self.dir(fin),box='0,0,0,0')     # this fails on 3D
            imval0 = casa.imval(self.dir(fin))
            freqs = imval0['coords'].transpose()[2]/1e9
            dt.tag("imval")
        nchan = len(freqs)
        chans = np.arange(nchan)

        # call CASA to get what we want
        # imstat0 is the whole cube, imstat1 the plane based statistics
        # warning: certain robust stats (**rargs) on the whole cube are going to be very slow
        dt.tag("start")
        imstat0 = casa.imstat(self.dir(fin),           logfile=self.dir('imstat0.logfile'),append=False,**rargs)
        dt.tag("imstat0")
        imstat1 = casa.imstat(self.dir(fin),axes=[0,1],logfile=self.dir('imstat1.logfile'),append=False,**rargs)
        dt.tag("imstat1")
        # imm = casa.immoments(self.dir(fin),axis='spec', moments=8, outfile=self.dir('ppp.im'))
        if nrargs > 0:
            # need to get the peaks without rubust
            imstat10 = casa.imstat(self.dir(fin),           logfile=self.dir('imstat0.logfile'),append=True)
            dt.tag("imstat10")
            imstat11 = casa.imstat(self.dir(fin),axes=[0,1],logfile=self.dir('imstat1.logfile'),append=True)
            dt.tag("imstat11")

        # grab the relevant plane-based things from imstat1
        if nrargs == 0:
            mean    = imstat1["mean"]
            sigma   = imstat1["medabsdevmed"]*1.4826     # see also: astropy.stats.median_absolute_deviation()
            peakval = imstat1["max"]
            minval  = imstat1["min"]
        else:
            mean    = imstat1["mean"]
            sigma   = imstat1["rms"]
            peakval = imstat11["max"]
            minval  = imstat11["min"]

        if True:
            # work around a bug in imstat(axes=[0,1]) for last channel [CAS-7697]
            for i in range(len(sigma)):
                if sigma[i] == 0.0:
                    minval[i] = peakval[i] = 0.0

        # too many variations in the RMS ?
        sigma_pos = sigma[np.where(sigma>0)]
        smin = sigma_pos.min()
        smax = sigma_pos.max()
        logging.info("sigma varies from %f to %f; %d/%d channels ok" % (smin,smax,len(sigma_pos),len(sigma)))
        if maxvrms > 0:
            if smax/smin > maxvrms:
                cliprms = smin * maxvrms
                logging.warning("sigma varies too much, going to clip to %g (%g > %g)" % (cliprms, smax/smin, maxvrms))
                sigma = np.where(sigma < cliprms, sigma, cliprms)

        # @todo   (and check again) for foobar.fits all sigma's became 0 when robust was selected
        #         was this with mask=True/False?

        # PeakPointPlot (can be expensive, hence the option)
        if use_ppp:
            logging.info("Computing MaxPos for PeakPointPlot")
            xpos    = np.zeros(nchan)
            ypos    = np.zeros(nchan)
            peaksum = np.zeros(nchan)

            ia.open(self.dir(fin))
            for i in range(nchan):
                if sigma[i] > 0.0:
                    plane = ia.getchunk(blc=[0,0,i,-1],trc=[-1,-1,i,-1],dropdeg=True)
                    v = ma.masked_invalid(plane)
                    v_abs = np.absolute(v)
                    max = np.unravel_index(v_abs.argmax(), v_abs.shape)
                    xpos[i] = max[0]
                    ypos[i] = max[1]
                    if numsigma > 0.0:
                        peaksum[i] = ma.masked_less(v,numsigma * sigma[i]).sum()
            peaksum = np.nan_to_num(peaksum)    # put 0's where nan's are found
            ia.close()
            dt.tag("ppp")

        nzeros = len(np.where(sigma<=0.0))
        if nzeros > 0:
            zeroch = np.where(sigma<=0.0)
            logging.warning("There are %d fully masked channels (%s)" % (nzeros,str(zeroch)))

        # construct the admit Table for CubeStats_BDP
        # note data needs to be a tuple, later to be column_stack'd
        if use_ppp:
            labels = ["channel" ,"frequency" ,"mean"    ,"sigma"   ,"max"     ,"maxposx" ,"maxposy" ,"min",     "peaksum"]
            units  = ["number"  ,"GHz"       ,"Jy/beam" ,"Jy/beam" ,"Jy/beam" ,"number"  ,"number"  ,"Jy/beam", "Jy"]
            data   = (chans     ,freqs       ,mean      ,sigma     ,peakval   ,xpos      ,ypos      ,minval,    peaksum)

        else:
            labels = ["channel" ,"frequency" ,"mean"    ,"sigma"   ,"max"     ,"min"]
            units  = ["number"  ,"GHz"       ,"Jy/beam" ,"Jy/beam" ,"Jy/beam" ,"Jy/beam"]
            data   = (chans     ,freqs       ,mean      ,sigma     ,peakval   ,minval)

        table = Table(columns=labels,units=units,data=np.column_stack(data))
        b2.setkey("table",table)

        # get the full cube statistics, it depends if robust was pre-selected
        if nrargs == 0:
            mean0  = imstat0["mean"][0]
            sigma0 = imstat0["medabsdevmed"][0]*1.4826
            peak0  = imstat0["max"][0]
            b2.setkey("mean" , float(mean0))
            b2.setkey("sigma", float(sigma0))
            b2.setkey("minval",float(imstat0["min"][0]))
            b2.setkey("maxval",float(imstat0["max"][0]))
            b2.setkey("minpos",imstat0["minpos"][:3].tolist())     #? [] or array(..dtype=int32) ??
            b2.setkey("maxpos",imstat0["maxpos"][:3].tolist())     #? [] or array(..dtype=int32) ??
            logging.info("CubeMax: %f @ %s" % (imstat0["max"][0],str(imstat0["maxpos"])))
            logging.info("CubeMin: %f @ %s" % (imstat0["min"][0],str(imstat0["minpos"])))
            logging.info("CubeRMS: %f" % sigma0)
        else:
            mean0  = imstat0["mean"][0]
            sigma0 = imstat0["rms"][0]
            peak0  = imstat10["max"][0]
            b2.setkey("mean" , float(mean0))
            b2.setkey("sigma", float(sigma0))
            b2.setkey("minval",float(imstat10["min"][0]))
            b2.setkey("maxval",float(imstat10["max"][0]))
            b2.setkey("minpos",imstat10["minpos"][:3].tolist())     #? [] or array(..dtype=int32) ??
            b2.setkey("maxpos",imstat10["maxpos"][:3].tolist())     #? [] or array(..dtype=int32) ??
            logging.info("CubeMax: %f @ %s" % (imstat10["max"][0],str(imstat10["maxpos"])))
            logging.info("CubeMin: %f @ %s" % (imstat10["min"][0],str(imstat10["minpos"])))
            logging.info("CubeRMS: %f" % sigma0)
        b2.setkey("robust",robust)
        rms_ratio = imstat0["rms"][0]/sigma0
        logging.info("RMS Sanity check %f" % rms_ratio)
        if rms_ratio > 1.5:
            logging.warning("RMS sanity check = %f.  Either bad sidelobes, lotsa signal, or both" % rms_ratio)
        logging.regression("CST: %f %f" % (sigma0, rms_ratio))

        # plots: no plots need to be made when nchan=1 for continuum
        # however we could make a histogram, overlaying the "best" gauss so 
        # signal deviations are clear?

        logging.info('mean,rms,S/N=%f %f %f' % (mean0,sigma0,peak0/sigma0))

        if nchan == 1:
            # for a continuum/1-channel we only need to stuff some numbers into the _summary
            self._summary["chanrms"] = SummaryEntry([float(sigma0), fin], "CubeStats_AT", self.id(True))
            self._summary["dynrange"] = SummaryEntry([float(peak0)/float(sigma0), fin], "CubeStats_AT", self.id(True))
            self._summary["datamean"] = SummaryEntry([float(mean0), fin], "CubeStats_AT", self.id(True))
        else:
            y1 = np.log10(ma.masked_invalid(peakval))
            y2 = np.log10(ma.masked_invalid(sigma))
            y3 = y1-y2
            y4 = np.log10(ma.masked_invalid(-minval))
            y5 = y1-y4
            y = [y1,y2,y3,y4]
            title = 'CubeStats: ' + bdp_name+'_0'
            xlab  = 'Channel'
            ylab  = 'log(Peak,Noise,Peak/Noise)'
            labels = ['log(peak)','log(rms noise)','log(peak/noise)','log(|minval|)']
            myplot = APlot(ptype=self._plot_type,pmode=self._plot_mode,abspath=self.dir())
            segp = [[chans[0],chans[nchan-1],math.log10(sigma0),math.log10(sigma0)]]
            myplot.plotter(chans,y,title,bdp_name+"_0",xlab=xlab,ylab=ylab,segments=segp,labels=labels,thumbnail=True)
            imfile = myplot.getFigure(figno=myplot.figno,relative=True)
            thumbfile = myplot.getThumbnail(figno=myplot.figno,relative=True)

            image0 = Image(images={bt.PNG:imfile},thumbnail=thumbfile,thumbnailtype=bt.PNG,description="CubeStats_0")
            b2.addimage(image0,"im0")

            if use_ppp:
                # new trial for Lee
                title = 'PeakSum: (numsigma=%.1f)' % (numsigma)
                ylab = 'Jy*N_ppb'
                myplot.plotter(chans,[peaksum],title,bdp_name+"_00",xlab=xlab,ylab=ylab,thumbnail=False)

            if True:
                # hack ascii table
                y30 = np.where(sigma > 0, np.log10(peakval/sigma), 0.0)
                table2 = Table(columns=["freq","log(P/N)"],data=np.column_stack((freqs,y30)))
                table2.exportTable(self.dir("testCubeStats.tab"))
                del table2

            # the "box" for the "spectrum" is all pixels.  Don't know how to 
            # get this except via shape.
            ia.open(self.dir(fin))
            s = ia.summary()
            ia.close()
            if 'shape' in s:
                specbox = (0,0,s['shape'][0],s['shape'][1])
            else:
                specbox = ()

            caption = "Emission characteristics as a function of channel, as derived by CubeStats_AT "
            caption += "(cyan: global rms,"
            caption += " green: noise per channel,"
            caption += " blue: peak value per channel,"
            caption += " red: peak/noise per channel)."
            self._summary["spectra"] = SummaryEntry([0, 0, str(specbox), 'Channel', imfile, thumbfile , caption, fin], "CubeStats_AT", self.id(True))
            self._summary["chanrms"] = SummaryEntry([float(sigma0), fin], "CubeStats_AT", self.id(True))

            # @todo Will imstat["max"][0] always be equal to s['datamax']?  If not, why not?
            if 'datamax' in s:
                self._summary["dynrange"] = SummaryEntry([float(s['datamax']/sigma0), fin], "CubeStats_AT", self.id(True))
            else:
                self._summary["dynrange"] = SummaryEntry([float(imstat0["max"][0]/sigma0), fin], "CubeStats_AT", self.id(True))
            self._summary["datamean"] = SummaryEntry([imstat0["mean"][0], fin], "CubeStats_AT", self.id(True))

            title = bdp_name + "_1"
            xlab =  'log(Peak,Noise,P/N)'
            myplot.histogram([y1,y2,y3],title,bdp_name+"_1",xlab=xlab,thumbnail=True)

            imfile = myplot.getFigure(figno=myplot.figno,relative=True)
            thumbfile = myplot.getThumbnail(figno=myplot.figno,relative=True)
            image1 = Image(images={bt.PNG:imfile},thumbnail=thumbfile,thumbnailtype=bt.PNG,description="CubeStats_1")
            b2.addimage(image1,"im1")

            # note that the 'y2' can have been clipped, which can throw off stats.robust()
            # @todo  should set a mask for those.

            title = bdp_name + "_2"
            xlab = 'log(Noise))'
            n = len(y2)
            ry2 = stats.robust(y2)
            y2_mean = ry2.mean()
            y2_std  = ry2.std()
            if n>9: logging.debug("NORMALTEST2: %s" % str(scipy.stats.normaltest(ry2)))
            myplot.hisplot(y2,title,bdp_name+"_2",xlab=xlab,gauss=[y2_mean,y2_std],thumbnail=True)

            title = bdp_name + "_3"
            xlab = 'log(diff[Noise])'
            n = len(y2)
            # dy2 = y2[0:-2] - y2[1:-1]
            dy2 = ma.masked_equal(y2[0:-2] - y2[1:-1],0.0).compressed()
            rdy2 = stats.robust(dy2)
            dy2_mean = rdy2.mean()
            dy2_std  = rdy2.std()
            if n>9: logging.debug("NORMALTEST3: %s" % str(scipy.stats.normaltest(rdy2)))
            myplot.hisplot(dy2,title,bdp_name+"_3",xlab=xlab,gauss=[dy2_mean,dy2_std],thumbnail=True)


            title = bdp_name + "_4"
            xlab = 'log(Signal/Noise))'
            n = len(y3)
            ry3 = stats.robust(y3)
            y3_mean = ry3.mean()
            y3_std  = ry3.std()
            if n>9: logging.debug("NORMALTEST4: %s" % str(scipy.stats.normaltest(ry3)))
            myplot.hisplot(y3,title,bdp_name+"_4",xlab=xlab,gauss=[y3_mean,y3_std],thumbnail=True)

            title = bdp_name + "_5"
            xlab = 'log(diff[Signal/Noise)])'
            n = len(y3)
            dy3 = y3[0:-2] - y3[1:-1]
            rdy3 = stats.robust(dy3)
            dy3_mean = rdy3.mean()
            dy3_std  = rdy3.std()
            if n>9: logging.debug("NORMALTEST5: %s" % str(scipy.stats.normaltest(rdy3)))
            myplot.hisplot(dy3,title,bdp_name+"_5",xlab=xlab,gauss=[dy3_mean,dy3_std],thumbnail=True)


            title = bdp_name + "_6"
            xlab = 'log(Peak+Min)'
            n = len(y1)
            ry5 = stats.robust(y5)
            y5_mean = ry5.mean()
            y5_std  = ry5.std()
            if n>9: logging.debug("NORMALTEST6: %s" % str(scipy.stats.normaltest(ry5)))
            myplot.hisplot(y5,title,bdp_name+"_6",xlab=xlab,gauss=[y5_mean,y5_std],thumbnail=True)

            logging.debug("LogPeak: m,s= %f %f min/max %f %f" % (y1.mean(),y1.std(),y1.min(),y1.max()))
            logging.debug("LogNoise: m,s= %f %f %f %f min/max %f %f" % (y2.mean(),y2.std(),y2_mean,y2_std,y2.min(),y2.max()))
            logging.debug("LogDeltaNoise: RMS/sqrt(2)= %f %f " % (dy2.std()/math.sqrt(2),dy2_std/math.sqrt(2)))
            logging.debug("LogDeltaP/N:   RMS/sqrt(2)= %f %f" % (dy3.std()/math.sqrt(2),dy3_std/math.sqrt(2)))
            logging.debug("LogPeak+Min: robust m,s= %f %f" % (y5_mean,y5_std))

            # compute two ratios that should both be near 1.0 if noise is 'normal'
            ratio  = y2.std()/(dy2.std()/math.sqrt(2))
            ratio2 = y2_std/(dy2_std/math.sqrt(2))
            logging.info("RMS BAD VARIATION RATIO: %f %f" % (ratio,ratio2))

        # making PPP plot
        if nchan > 1 and use_ppp:
            smax = 10
            gamma = 0.75

            z0 = peakval/peakval.max()
            # point sizes
            s = np.pi * ( smax * (z0**gamma) )**2
            cmds = ["grid", "axis equal"]
            title = "Peak Points per channel"
            pppimage = bdp_name + '_ppp'
            myplot.scatter(xpos,ypos,title=title,figname=pppimage,size=s,color=chans,cmds=cmds,thumbnail=True)
            pppimage     = myplot.getFigure(figno=myplot.figno,relative=True)
            pppthumbnail = myplot.getThumbnail(figno=myplot.figno,relative=True)
            caption = "Peak point plot: Locations of per-channel peaks in the image cube " + fin
            self._summary["peakpnt"] = SummaryEntry([pppimage, pppthumbnail, caption, fin], "CubeStats_AT", self.id(True))
        dt.tag("plotting")

        # making PeakStats plot
        if nchan > 1 and psample > 0:
            logging.info("Computing peakstats")
            # grab peak,mean and width values for all peaks
            (pval,mval,wval) = peakstats(self.dir(fin),freqs,sigma0,pnumsigma,minchan,maxgap,psample,peakfit)
            title = "PeakStats: cutoff = %g" % (sigma0*pnumsigma)
            xlab = 'Peak value'
            ylab = 'FWHM (channels)'
            pppimage = bdp_name + '_peakstats'
            cval = mval
            myplot.scatter(pval,wval,title=title,xlab=xlab,ylab=ylab,color=cval,figname=pppimage,thumbnail=False)
            dt.tag("peakstats")
            

        # myplot.final()    # pjt debug 
        # all done!
        dt.tag("done")

        taskargs = "robust=" + sumrargs 
        if use_ppp: 
            taskargs = taskargs + " ppp=True"
        else: 
            taskargs = taskargs + " ppp=False"
        for v in self._summary:
            self._summary[v].setTaskArgs(taskargs)

        dt.tag("summary")
        dt.end()
예제 #7
0
    def run(self):
        """Runs the task.

           Parameters
           ----------
           None

           Returns
           -------
           None
        """

        self._summary = {}
        dt = utils.Dtime("CubeSpectrum")

        # our BDP's
        # b1  = input BDP
        # b1s = optional input CubeSpectrum
        # b1m = optional input Moment
        # b1p = optional input SourceList for positions
        # b2  = output BDP

        b1 = self._bdp_in[0]  # check input SpwCube (or LineCube)
        fin = b1.getimagefile(bt.CASA)
        if self._bdp_in[0]._type == bt.LINECUBE_BDP:
            use_vel = True
        else:
            use_vel = False

        sources = self.getkey("sources")
        pos = [
        ]  # blank it first, then try and grab it from the optional bdp_in's
        cmean = 0.0
        csigma = 0.0
        smax = []  # accumulate max in each spectrum for regression
        self.spec_description = []  # for summary()

        if self._bdp_in[1] != None:  # check if CubeStats_BDP
            #print "BDP[1] type: ",self._bdp_in[1]._type
            if self._bdp_in[1]._type != bt.CUBESTATS_BDP:
                raise Exception, "bdp_in[1] not a CubeStats_BDP, should never happen"
            # a table (cubestats)
            b1s = self._bdp_in[1]
            pos.append(b1s.maxpos[0])
            pos.append(b1s.maxpos[1])
            logging.info('CubeStats::maxpos,val=%s,%f' %
                         (str(b1s.maxpos), b1s.maxval))
            cmean = b1s.mean
            csigma = b1s.sigma
            dt.tag("CubeStats-pos")

        if self._bdp_in[
                2] != None:  # check if Moment_BDP (probably from CubeSum)
            #print "BDP[2] type: ",self._bdp_in[2]._type
            if self._bdp_in[2]._type != bt.MOMENT_BDP:
                raise Exception, "bdp_in[2] not a Moment_BDP, should never happen"
            b1m = self._bdp_in[2]
            fim = b1m.getimagefile(bt.CASA)
            pos1, maxval = self.maxpos_im(
                self.dir(fim))  # compute maxpos, since it is not in bdp (yet)
            logging.info('CubeSum::maxpos,val=%s,%f' % (str(pos1), maxval))
            pos.append(pos1[0])
            pos.append(pos1[1])
            dt.tag("Moment-pos")

        if self._bdp_in[3] != None:  # check if SourceList
            #print "BDP[3] type: ",self._bdp_in[3]._type
            # a table (SourceList)
            b1p = self._bdp_in[3]
            ra = b1p.table.getFullColumnByName("RA")
            dec = b1p.table.getFullColumnByName("DEC")
            peak = b1p.table.getFullColumnByName("Peak")
            if sources == []:
                # use the whole SourceList
                for (r, d, p) in zip(ra, dec, peak):
                    rdc = convert_sexa(r, d)
                    pos.append(rdc[0])
                    pos.append(rdc[1])
                    logging.info('SourceList::maxpos,val=%s,%f' %
                                 (str(rdc), p))
            else:
                # select specific ones from the source list
                for ipos in sources:
                    if ipos < len(ra):
                        radec = convert_sexa(ra[ipos], dec[ipos])
                        pos.append(radec[0])
                        pos.append(radec[1])
                        logging.info('SourceList::maxpos,val=%s,%f' %
                                     (str(radec), peak[ipos]))
                    else:
                        logging.warning('Skipping illegal source number %d' %
                                        ipos)

            dt.tag("SourceList-pos")

        # if pos[] still blank, use the AT keyword.
        if len(pos) == 0:
            pos = self.getkey("pos")

        # if still none, try the map center
        if len(pos) == 0:
            # @todo  this could result in a masked pixel and cause further havoc
            # @todo  could also take the reference pixel, but that could be outside image
            taskinit.ia.open(self.dir(fin))
            s = taskinit.ia.summary()
            pos = [int(s['shape'][0]) / 2, int(s['shape'][1]) / 2]
            logging.warning(
                "No input positions supplied, map center choosen: %s" %
                str(pos))
            dt.tag("map-center")

        # exhausted all sources where pos[] can be set; if still zero, bail out
        if len(pos) == 0:
            raise Exception, "No positions found from input BDP's or pos="

        # convert this regular list to a list of tuples with duplicates removed
        # sadly the order is lost.
        pos = list(set(zip(pos[0::2], pos[1::2])))
        npos = len(pos)

        dt.tag("open")

        bdp_name = self.mkext(fin, "csp")
        b2 = CubeSpectrum_BDP(bdp_name)
        self.addoutput(b2)

        imval = range(npos)  # spectra, one for each pos (placeholder)
        planes = range(npos)  # labels for the tables (placeholder)
        images = {}  # png's accumulated

        for i in range(npos):  # loop over pos, they can have mixed types now
            sd = []
            caption = "Spectrum"
            xpos = pos[i][0]
            ypos = pos[i][1]
            if type(xpos) != type(ypos):
                print "POS:", xpos, ypos
                raise Exception, "position pair not of the same type"
            if type(xpos) == int:
                # for integers, boxes are allowed, even multiple
                box = '%d,%d,%d,%d' % (xpos, ypos, xpos, ypos)
                # convention for summary is (box)
                cbox = '(%d,%d,%d,%d)' % (xpos, ypos, xpos, ypos)
                # use extend here, not append, we want individual values in a list
                sd.extend([xpos, ypos, cbox])
                caption = "Average Spectrum at %s" % cbox
                if False:
                    # this will fail on 3D cubes (see CAS-7648)
                    imval[i] = casa.imval(self.dir(fin), box=box)
                else:
                    # work around that CAS-7648 bug
                    # another approach is the ia.getprofile(), see CubeStats, this will
                    # also integrate over regions, imval will not (!!!)
                    region = 'centerbox[[%dpix,%dpix],[1pix,1pix]]' % (xpos,
                                                                       ypos)
                    caption = "Average Spectrum at %s" % region
                    imval[i] = casa.imval(self.dir(fin), region=region)
            elif type(xpos) == str:
                # this is tricky, to stay under 1 pixel , or you get a 2x2 back.
                region = 'centerbox[[%s,%s],[1pix,1pix]]' % (xpos, ypos)
                caption = "Average Spectrum at %s" % region
                sd.extend([xpos, ypos, region])
                imval[i] = casa.imval(self.dir(fin), region=region)
            else:
                print "Data type: ", type(xpos)
                raise Exception, "Data type for region not handled"
            dt.tag("imval")

            flux = imval[i]['data']
            if len(flux.shape
                   ) > 1:  # rare case if we step on a boundary between cells?
                logging.warning(
                    "source %d has spectrum shape %s: averaging the spectra" %
                    (i, repr(flux.shape)))
                flux = np.average(flux, axis=0)
            logging.debug('minmax: %f %f %d' %
                          (flux.min(), flux.max(), len(flux)))
            smax.append(flux.max())
            if i == 0:  # for first point record few extra things
                if len(imval[i]['coords'].shape) == 2:  # normal case: 1 pixel
                    freqs = imval[i]['coords'].transpose(
                    )[2] / 1e9  # convert to GHz  @todo: input units ok?
                elif len(imval[i]['coords'].shape
                         ) == 3:  # rare case if > 1 point in imval()
                    freqs = imval[i]['coords'][0].transpose(
                    )[2] / 1e9  # convert to GHz  @todo: input units ok?
                else:
                    logging.fatal(
                        "bad shape %s in freq return from imval - SHOULD NEVER HAPPEN"
                        % imval[i]['coords'].shape)
                chans = np.arange(len(freqs))  # channels 0..nchans-1
                unit = imval[i]['unit']
                restfreq = casa.imhead(
                    self.dir(fin), mode="get",
                    hdkey="restfreq")['value'] / 1e9  # in GHz
                dt.tag("imhead")
                vel = (
                    1 - freqs / restfreq
                ) * utils.c  #  @todo : use a function (and what about relativistic?)

            # construct the Table for CubeSpectrum_BDP
            # @todo note data needs to be a tuple, later to be column_stack'd
            labels = ["channel", "frequency", "flux"]
            units = ["number", "GHz", unit]
            data = (chans, freqs, flux)

            if i == 0:
                # plane 0 : we are allowing a multiplane table, so the first plane is special
                table = Table(columns=labels,
                              units=units,
                              data=np.column_stack(data),
                              planes=["0"])
            else:
                # planes 1,2,3.... are stacked onto the previous one
                table.addPlane(np.column_stack(data), "%d" % i)

            # example plot , one per position for now
            if use_vel:
                x = vel
                xlab = 'VLSR (km/s)'
            else:
                x = chans
                xlab = 'Channel'
            y = [flux]
            sd.append(xlab)
            if type(xpos) == int:
                # grab the RA/DEC... kludgy
                h = casa.imstat(self.dir(fin), box=box)
                ra = h['blcf'].split(',')[0]
                dec = h['blcf'].split(',')[1]
                title = '%s %d @ %d,%d = %s,%s' % (bdp_name, i, xpos, ypos, ra,
                                                   dec)
            else:
                title = '%s %d @ %s,%s' % (
                    bdp_name, i, xpos, ypos
                )  # or use box, once we allow non-points

            myplot = APlot(ptype=self._plot_type,
                           pmode=self._plot_mode,
                           abspath=self.dir())
            ylab = 'Flux (%s)' % unit
            p1 = "%s_%d" % (bdp_name, i)
            myplot.plotter(x,
                           y,
                           title,
                           p1,
                           xlab=xlab,
                           ylab=ylab,
                           thumbnail=True)
            # Why not use p1 as the key?
            ii = images["pos%d" % i] = myplot.getFigure(figno=myplot.figno,
                                                        relative=True)
            thumbname = myplot.getThumbnail(figno=myplot.figno, relative=True)
            sd.extend([ii, thumbname, caption, fin])
            self.spec_description.append(sd)

        logging.regression("CSP: %s" % str(smax))

        image = Image(images=images, description="CubeSpectrum")
        b2.setkey("image", image)
        b2.setkey("table", table)
        b2.setkey("sigma", csigma)  # TODO: not always available
        b2.setkey("mean", cmean)  # TODO: not always available

        if True:
            #       @todo     only first plane due to limitation in exportTable()
            islash = bdp_name.find('/')
            if islash < 0:
                tabname = self.dir("testCubeSpectrum.tab")
            else:
                tabname = self.dir(bdp_name[:islash] + "/testCubeSpectrum.tab")
            table.exportTable(tabname, cols=["frequency", "flux"])
        dt.tag("done")
        # For a single spectrum this is
        # SummaryEntry([[data for spec1]], "CubeSpectrum_AT",taskid)
        # For multiple spectra this is
        # SummaryEntry([[data for spec1],[data for spec2],...], "CubeSpectrum_AT",taskid)
        self._summary["spectra"] = SummaryEntry(self.spec_description,
                                                "CubeSpectrum_AT",
                                                self.id(True))
        taskargs = "pos=" + str(pos)
        taskargs += '&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; <span style="background-color:white">&nbsp;' + fin.split(
            '/')[0] + '&nbsp;</span>'
        for v in self._summary:
            self._summary[v].setTaskArgs(taskargs)
        dt.tag("summary")
        dt.end()
예제 #8
0
파일: SFind2D_AT.py 프로젝트: teuben/admit
    def run(self):
        """ The run method creates the BDP

            Parameters
            ----------
            None

            Returns
            -------
            None
        """
        dt = utils.Dtime("SFind2D")               # tagging time
        self._summary = {}
        # get key words that user input
        nsigma = self.getkey("numsigma")
        sigma  = self.getkey("sigma")
        region = self.getkey("region")
        robust = self.getkey("robust")
        snmax  = self.getkey("snmax")
        ds9 = True                                     # writes a "ds9.reg" file
        mpl = True                                     # aplot.map1() plot
        dynlog = 20.0                                  # above this value of dyn range finder chart is log I-scaled
        bpatch = True                                  # patch units to Jy/beam for ia.findsources()
        
        # get the input casa image from bdp[0]
        bdpin = self._bdp_in[0]
        infile = bdpin.getimagefile(bt.CASA)
        if mpl:
            data = np.flipud(np.rot90(casautil.getdata(self.dir(infile)).data))

        # check if there is a 2nd image (which will be a PB)
        for i in range(len(self._bdp_in)):
            print 'BDP',i,type(self._bdp_in[i])

        if self._bdp_in[2] != None:
            bdpin_pb  = self._bdp_in[1]            
            bdpin_cst = self._bdp_in[2]
            print "Need to process PB"
        else:
            bdpin_pb  = None
            bdpin_cst = self._bdp_in[1]
            print "No PB given"
            

        # get the output bdp basename
        slbase = self.mkext(infile,'sl')

        # make sure it's a 2D map
        if not casautil.mapdim(self.dir(infile),2):
            raise Exception,"Input map dimension not 2: %s" % infile

        # arguments for imstat call if required
        args = {"imagename" : self.dir(infile)}
        if region != "":
            args["region"] = region
        dt.tag("start")

        # The following code sets the sigma level for searching for sources using
        # the sigma and snmax keyword as appropriate
        # if no CubeStats BDP was given and no sigma was specified:
        # find a noise level via casa.imstat()
        # if a CubeStat_BDP is given get it from there.
        if bdpin_cst == None:
            # get statistics from input image with imstat because no CubeStat_BDP
            stat  = casa.imstat(**args)
            dmin  = float(stat["min"][0])                 # these would be wrong if robust were used already
            dmax  = float(stat["max"][0])
            args.update(casautil.parse_robust(robust))    # only now add robust keywords for the sigma
            stat  = casa.imstat(**args)            
            if sigma <= 0.0 :
                sigma = float(stat["sigma"][0])
            dt.tag("imstat")
        else:
            # get statistics from CubeStat_BDP 
            sigma = bdpin_cst.get("sigma")
            dmin  = bdpin_cst.get("minval")
            dmax  = bdpin_cst.get("maxval")

        self.setkey("sigma",sigma)
        # calculate cutoff based either on RMS or dynamic range limitation
        drange = dmax/(nsigma*sigma)
        if snmax < 0.0 :
            snmax = drange
        if drange > snmax :
            cutoff = 1.0/snmax
        else:
            cutoff = 1.0/drange
        logging.info("sigma, dmin, dmax, snmax, cutoff %g %g %g %g %g" % (sigma, dmin, dmax, snmax, cutoff))
        # define arguments for call to findsources
        args2 = {"cutoff" : cutoff}
        args2["nmax"] = 30
        if region != "" :
            args2["region"] = region
        #args2["mask"] = ""
        args2["point"] = False
        args2["width"] = 5
        args2["negfind"] = False
        # set-up for SourceList_BDP
        slbdp = SourceList_BDP(slbase)

        # connect to casa image and call casa ia.findsources tool
        taskinit.ia.open(self.dir(infile))

        # findsources() cannot deal with  'Jy/beam.km/s' ???
        # so for the duration of findsources() we patch it
        bunit = taskinit.ia.brightnessunit()
        if bpatch and bunit != 'Jy/beam':
            logging.warning("Temporarely patching your %s units to Jy/beam for ia.findsources()" % bunit) 
            taskinit.ia.setbrightnessunit('Jy/beam')
        else:
            bpatch = False
        atab = taskinit.ia.findsources(**args2)
        if bpatch:
            taskinit.ia.setbrightnessunit(bunit)
        
        taskargs = "nsigma=%4.1f sigma=%g region=%s robust=%s snmax=%5.1f" % (nsigma,sigma,str(region),str(robust),snmax)
        dt.tag("findsources")
        nsources = atab["nelements"] 
        xtab = []
        ytab = []
        logscale = False
        sumflux = 0.0
        if nsources > 0:
            # @TODO: Why are Xpix, YPix not stored in the table?
            #        -> PJT: I left them out since they are connected to an image which may not be available here
            #                but we should store the frequency of the observation here for later bandmerging
            logging.debug("%s" % str(atab['component0']['shape']))
            logging.info("Right Ascen.  Declination   X(pix)   Y(pix)      Peak       Flux    Major   Minor    PA    SNR")
            funits = atab['component0']['flux']['unit']
            if atab['component0']['shape'].has_key('majoraxis'):
                sunits = atab['component0']['shape']['majoraxis']['unit']
                aunits = atab['component0']['shape']['positionangle']['unit']
            else:
                sunits = "n/a"
                aunits = "n/a"
            punits = taskinit.ia.summary()['unit']
            logging.info("                                               %s       %s    %s   %s   %s" % (punits,funits,sunits,sunits,aunits))
            #
            # @todo future improvement is to look at image coordinates and control output appropriately
            #
            if ds9:
                # @todo variable name
                regname = self.mkext(infile,'ds9.reg')
                fp9 = open(self.dir(regname),"w!")
            for i in range(nsources):
                c = "component%d" % i
                name = "%d" % (i+1)
                r = atab[c]['shape']['direction']['m0']['value']
                d = atab[c]['shape']['direction']['m1']['value']
                pixel = taskinit.ia.topixel([r,d])
                xpos = pixel['numeric'][0]
                ypos = pixel['numeric'][1]
                rd = taskinit.ia.toworld([xpos,ypos],'s')
                ra = rd['string'][0][:12]
                dec = rd['string'][1][:12]
                flux = atab[c]['flux']['value'][0]
                sumflux = sumflux + flux
                if atab[c]['shape'].has_key('majoraxis'):
                    smajor = atab[c]['shape']['majoraxis']['value']
                    sminor = atab[c]['shape']['minoraxis']['value']
                    sangle = atab[c]['shape']['positionangle']['value']
                else:
                    smajor = 0.0
                    sminor = 0.0
                    sangle = 0.0
                peakstr = taskinit.ia.pixelvalue([xpos,ypos,0,0])
                if len(peakstr) == 0:
                    logging.warning("Problem with source %d @ %d,%d" % (i,xpos,ypos))
                    continue
                peakf = peakstr['value']['value']
                snr = peakf/sigma
                if snr > dynlog:
                    logscale = True
                logging.info("%s %s %8.2f %8.2f %10.3g %10.3g %7.3f %7.3f %6.1f %6.1f" % (ra,dec,xpos,ypos,peakf,flux,smajor,sminor,sangle,snr))
                
                xtab.append(xpos)
                ytab.append(ypos)
                slbdp.addRow([name,ra,dec,flux,peakf,smajor,sminor,sangle])
                if ds9:
                    ras = ra
                    des = dec.replace('.',':',2)
                    msg = 'ellipse(%s,%s,%g",%g",%g) # text={%s}' % (ras,des,smajor,sminor,sangle+90.0,i+1)
                    fp9.write("%s\n" % msg)
            if ds9:
                fp9.close()
                logging.info("Wrote ds9.reg")
            dt.tag("table")
        logging.regression("CONTFLUX: %d %g" % (nsources,sumflux))
        

        summary = taskinit.ia.summary()
        beammaj = summary['restoringbeam']['major']['value']
        beammin = summary['restoringbeam']['minor']['value']
        beamunit = summary['restoringbeam']['minor']['unit']
        beamang = summary['restoringbeam']['positionangle']['value']
        angunit = summary['restoringbeam']['positionangle']['unit']
        # @todo add to table comments?
        logging.info(" Fitted Gaussian size; NOT deconvolved source size.")
        logging.info(" Restoring Beam: Major axis: %10.3g %s , Minor axis: %10.3g %s , PA: %5.1f %s" % (beammaj, beamunit, beammin, beamunit, beamang, angunit))
        # form into a xml table
        
        # output is a table_bdp
        self.addoutput(slbdp)

        # instantiate a plotter for all plots made herein
        myplot = APlot(ptype=self._plot_type,pmode=self._plot_mode,abspath=self.dir())

        # make output png with circles marking sources found
        if mpl:
            circles=[]
            nx = data.shape[1]             # data[] array was already flipud(rot90)'d
            ny = data.shape[0]             # 
            for (x,y) in zip(xtab,ytab):
                circles.append([x,y,1])
            # @todo variable name
            if logscale:
                logging.warning("LogScaling applied")
                data = data/sigma
                data = np.where(data<0,-np.log10(1-data),+np.log10(1+data))
            title = "SFind2D: %d sources" % nsources
            myplot.map1(data,title,slbase,thumbnail=True,circles=circles)

        #---------------------------------------------------------
        # Get the figure and thumbmail names and create a caption
        #---------------------------------------------------------
        imname = myplot.getFigure(figno=myplot.figno,relative=True)
        thumbnailname = myplot.getThumbnail(figno=myplot.figno,relative=True)
        caption = "Image of input map with sources found by SFind2D overlayed in green."
        slbdp.table.description="Table of source locations and sizes (not deconvolved)"
 
        #---------------------------------------------------------
        # Add finder image to the BDP
        #---------------------------------------------------------
        image = Image(images={bt.PNG: imname}, 
                      thumbnail=thumbnailname, 
                      thumbnailtype=bt.PNG, description=caption)
        slbdp.image.addimage(image, "finderimage")

        #-------------------------------------------------------------
        # Create the summary entry for the table and image
        #-------------------------------------------------------------
        self._summary["sources"] = SummaryEntry([slbdp.table.serialize(),
                                                 slbdp.image.serialize()],
                                                "SFind2D_AT", 
                                                self.id(True), taskargs)
        
        dt.tag("done")
        dt.end()
예제 #9
0
파일: Moment_AT.py 프로젝트: astroumd/admit
    def run(self):
        """ The run method, calculates the moments and creates the BDP(s)

            Parameters
            ----------
            None

            Returns
            -------
            None
        """
        self._summary = {}
        momentsummary = []
        dt = utils.Dtime("Moment")

        # variable to track if we are using a single cutoff for all moment maps
        allsame = False
        moments = self.getkey("moments")
        numsigma = self.getkey("numsigma")
        mom0clip = self.getkey("mom0clip")
        # determine if there is only 1 cutoff or if there is a cutoff for each moment
        if len(moments) != len(numsigma):
            if len(numsigma) != 1:
                raise Exception("Length of numsigma and moment lists do not match. They must be the same length or the length of the cutoff list must be 1.")
            allsame = True
        # default moment file extensions, this is information copied from casa.immoments()
        momentFileExtensions = {-1: ".average",
                                 0: ".integrated",
                                 1: ".weighted_coord",
                                 2: ".weighted_dispersion_coord",
                                 3: ".median",
                                 4: "",
                                 5: ".standard_deviation",
                                 6: ".rms",
                                 7: ".abs_mean_dev",
                                 8: ".maximum",
                                 9: ".maximum_coord",
                                10: ".minimum",
                                11: ".minimum_coord",
                                }

        logging.debug("MOMENT: %s %s %s" %  (str(moments), str(numsigma), str(allsame)))

        # get the input casa image from bdp[0]
        # also get the channels the line actually covers (if any)
        bdpin = self._bdp_in[0]
        infile = bdpin.getimagefile(bt.CASA)
        chans = self.getkey("chans")
        # the basename of the moments, we will append _0, _1, etc.
        basename = self.mkext(infile, "mom")
        fluxname = self.mkext(infile, "flux")
        # beamarea = nppb(self.dir(infile))
        beamarea = 1.0  # until we have it from the MOM0 map

        sigma0 = self.getkey("sigma")
        sigma  = sigma0

        ia = taskinit.iatool()

        dt.tag("open")

        # if no CubseStats BDP was given and no sigma was specified, find a 
        # noise level via casa.imstat()
        if self._bdp_in[1] is None and sigma <= 0.0:
            raise Exception("A sigma or a CubeStats_BDP must be input to calculate the cutoff")
        elif self._bdp_in[1] is not None:
            sigma = self._bdp_in[1].get("sigma")

        # immoments is a bit peculiar. If you give one moment, it will use 
        # exactly the outfile you picked for multiple moments, it will pick
        # extensions such as .integrated [0], .weighted_coord [1] etc.
        # we loop over the moments and will use the numeric extension instead. 
        # Might be laborious loop for big input cubes
        #
        # arguments for immoments
        args = {"imagename" : self.dir(infile),
                "moments"   : moments,
                "outfile"   : self.dir(basename)}

        # set the channels if given
        if chans != "":
            args["chans"] = chans
        # error check the mom0clip input
        if mom0clip > 0.0 and not 0 in moments:
            logging.warning("mom0clip given, but no moment0 map was requested. One will be generated anyway.")
            # add moment0 to the list of computed moments, but it has to be first
            moments.insert(0,0)
            if not allsame:
                numsigma.insert(0, 2.0*sigma)

        if allsame:
            # this is only executed now if len(moments) > 1 and len(cutoff)==1
            args["excludepix"] = [-numsigma[0] * sigma, numsigma[0] * sigma]
            casa.immoments(**args)
            dt.tag("immoments-all")
        else:
            # this is execute if len(moments)==len(cutoff) , even when len=1
            for i in range(len(moments)):
                args["excludepix"] = [-numsigma[i] * sigma, numsigma[i] * sigma]
                args["moments"] = moments[i]
                args["outfile"] = self.dir(basename + momentFileExtensions[moments[i]])
                casa.immoments(**args)
                dt.tag("immoments-%d" % moments[i])

        taskargs = "moments=%s numsigma=%s" % (str(moments), str(numsigma)) 
        if sigma0 > 0:
            taskargs = taskargs + " sigma=%.2f" % sigma0
        if mom0clip > 0:
            taskargs = taskargs + " mom0clip=%g" % mom0clip
        if chans == "": 
            taskargs = taskargs + " chans=all"
        else:
            taskargs = taskargs + " chans=%s" % str(chans)
        taskargs += '&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; <span style="background-color:white">&nbsp;' + basename.split('/')[0] + '&nbsp;</span>'

        # generate the mask to be applied to all but moment 0
        if mom0clip > 0.0:
            # get the statistics from mom0 map
            # this is usually a very biased map, so unclear if mom0sigma is all that reliable
            args = {"imagename": self.dir(infile)}
            stat = casa.imstat(imagename=self.dir(basename + momentFileExtensions[0]))
            mom0sigma = float(stat["sigma"][0])
            # generate a temporary masked file, mask will be copied to other moments
            args = {"imagename" : self.dir(basename + momentFileExtensions[0]),
                    "expr"      : 'IM0[IM0>%f]' % (mom0clip * mom0sigma),
                    "outfile"   : self.dir("mom0.masked")
                    }
            casa.immath(**args)
            # get the default mask name
            ia.open(self.dir("mom0.masked"))
            defmask = ia.maskhandler('default')
            ia.close()
            dt.tag("mom0clip")

        # loop over moments to rename them to _0, _1, _2 etc.
        # apply a mask as well for proper histogram creation
        map = {}
        myplot = APlot(pmode=self._plot_mode,ptype=self._plot_type,abspath=self.dir())
        implot = ImPlot(pmode=self._plot_mode,ptype=self._plot_type,abspath=self.dir())

        for mom in moments:
            figname = imagename = "%s_%i" % (basename, mom)
            tempname = basename + momentFileExtensions[mom]
            # rename and remove the old one if there is one
            utils.rename(self.dir(tempname), self.dir(imagename))
            # copy the moment0 mask if requested; this depends on that mom0 was done before
            if mom0clip > 0.0 and mom != 0:
                #print "PJT: output=%s:%s" % (self.dir(imagename), defmask[0])
                #print "PJT: inpmask=%s:%s" % (self.dir("mom0.masked"),defmask[0])
                makemask(mode="copy", inpimage=self.dir("mom0.masked"),
                         output="%s:%s" % (self.dir(imagename), defmask[0]),
                         overwrite=True, inpmask="%s:%s" % (self.dir("mom0.masked"),
                                                            defmask[0]))
                ia.open(self.dir(imagename))
                ia.maskhandler('set', defmask)
                ia.close()
                dt.tag("makemask")
            if mom == 0:
                beamarea = nppb(self.dir(imagename))
            implot.plotter(rasterfile=imagename,figname=figname,
                           colorwedge=True,zoom=self.getkey("zoom"))
            imagepng  = implot.getFigure(figno=implot.figno,relative=True)
            thumbname = implot.getThumbnail(figno=implot.figno,relative=True)
            images = {bt.CASA : imagename, bt.PNG  : imagepng}
            thumbtype=bt.PNG
            dt.tag("implot")

            # get the data for a histogram (ia access is about 1000-2000 faster than imval())
            map[mom] = casautil.getdata(self.dir(imagename))
            data = map[mom].compressed()
            dt.tag("getdata")

            # make the histogram plot

            # get the label for the x axis
            bunit = casa.imhead(imagename=self.dir(imagename), mode="get", hdkey="bunit")
            # object for the caption
            objectname = casa.imhead(imagename=self.dir(imagename), mode="get", hdkey="object")

            # Make the histogram plot
            # Since we give abspath in the constructor, figname should be relative
            auxname = imagename + '_histo'
            auxtype = bt.PNG
            myplot.histogram(columns = data,
                             figname = auxname,
                             xlab    = bunit,
                             ylab    = "Count",
                             title   = "Histogram of Moment %d: %s" % (mom, imagename), thumbnail=True)

            casaimage = Image(images    = images,
                                    auxiliary = auxname,
                                    auxtype   = auxtype,
                                    thumbnail = thumbname,
                                    thumbnailtype = thumbtype)
            auxname = myplot.getFigure(figno=myplot.figno,relative=True)
            auxthumb = myplot.getThumbnail(figno=myplot.figno,relative=True)

            if hasattr(self._bdp_in[0], "line"):   # SpwCube doesn't have Line
                line = deepcopy(getattr(self._bdp_in[0], "line"))
                if not isinstance(line, Line):
                    line = Line(name="Unidentified")
            else:
                # fake a Line if there wasn't one
                line = Line(name="Unidentified")
            # add the BDP to the output array
            self.addoutput(Moment_BDP(xmlFile=imagename, moment=mom,
                           image=deepcopy(casaimage), line=line))
            dt.tag("ren+mask_%d" % mom)

            imcaption = "%s Moment %d map of Source %s" % (line.name, mom, objectname)
            auxcaption = "Histogram of %s Moment %d of Source %s" % (line.name, mom, objectname)
            thismomentsummary = [line.name, mom, imagepng, thumbname, imcaption,
                                 auxname, auxthumb, auxcaption, infile]
            momentsummary.append(thismomentsummary)

        if map.has_key(0) and map.has_key(1) and map.has_key(2):
            logging.debug("MAPs present: %s" % (map.keys()))

            # m0 needs a new mask, inherited from the more restricted m1 (and m2)
            m0 = ma.masked_where(map[1].mask,map[0])
            m1 = map[1]
            m2 = map[2]
            m01 = m0*m1
            m02 = m0*m1*m1
            m22 = m0*m2*m2
            sum0 = m0.sum()
            vmean = m01.sum()/sum0
            # lacking the full 3D cube, get two estimates and take the max
            sig1  = math.sqrt(m02.sum()/sum0 - vmean*vmean)
            sig2  = m2.max()
            #vsig = max(sig1,sig2)
            vsig = sig1
            
            # consider clipping in the masked array (mom0clip)
            # @todo   i can't use info from line, so just borrow basename for now for grepping
            #         this also isn't really the flux, the points per beam is still in there
            loc = basename.rfind('/')
            sum1 = ma.masked_less(map[0],0.0).sum()   # mom0clip
            # print out:   LINE,FLUX1,FLUX0,BEAMAREA,VMEAN,VSIGMA for regression
            # the linechans parameter in bdpin is not useful to print out here, it's local to the LineCube
            s_vlsr = admit.Project.summaryData.get('vlsr')[0].getValue()[0]
            s_rest = admit.Project.summaryData.get('restfreq')[0].getValue()[0]/1e9
            s_line = line.frequency
            if loc>0:
                if basename[:loc][0:2] == 'U_':
                    # for U_ lines we'll reference the VLSR w.r.t. RESTFREQ in that band
                    if abs(vmean) > vsig:
                        vwarn = '*'
                    else:
                        vwarn = ''
                    vlsr = vmean + (1.0-s_line/s_rest)*utils.c
                    msg = "MOM0FLUX: %s %g %g %g %g %g %g" % (basename[:loc],map[0].sum(),sum0,beamarea,vmean,vlsr,vsig)
                else:
                    # for identified lines we'll assume the ID was correct and not bother with RESTFREQ
                    msg = "MOM0FLUX: %s %g %g %g %g %g %g" % (basename[:loc],map[0].sum(),sum0,beamarea,vmean,vmean,vsig)
            else:
                msg = "MOM0FLUX: %s %g %g %g %g %g %g" % ("SPW_FULL"    ,map[0].sum(),sum0,beamarea,vmean,vmean,vsig)
            logging.regression(msg)
            dt.tag("mom0flux")

            # create a histogram of flux per channel

            # grab the X coordinates for the histogram, we want them in km/s
            # restfreq should also be in summary
            restfreq = casa.imhead(self.dir(infile),mode="get",hdkey="restfreq")['value']/1e9    # in GHz
            # print "PJT  %.10f %.10f" % (restfreq,s_rest)
            imval0 = casa.imval(self.dir(infile))
            freqs = imval0['coords'].transpose()[2]/1e9
            x = (1-freqs/restfreq)*utils.c
            # 
            h = casa.imstat(self.dir(infile), axes=[0,1])
            if h.has_key('flux'):
                flux0 = h['flux']
            else:
                flux0 = h['sum']/beamarea
            flux0sum = flux0.sum() * abs(x[1]-x[0])
            # @todo   make a flux1 with fluxes derived from a good mask
            flux1 = flux0 
            # construct histogram
            title = 'Flux Spectrum (%g)' % flux0sum
            xlab = 'VLSR (km/s)'
            ylab = 'Flux (Jy)'
            myplot.plotter(x,[flux0,flux1],title=title,figname=fluxname,xlab=xlab,ylab=ylab,histo=True)
            dt.tag("flux-spectrum")
            
        self._summary["moments"] = SummaryEntry(momentsummary, "Moment_AT", 
                                                self.id(True), taskargs)
        # get rid of the temporary mask
        if mom0clip > 0.0: 
            utils.rmdir(self.dir("mom0.masked"))

        dt.tag("done")
        dt.end()
예제 #10
0
    def run(self):
        """ Main program for OverlapIntegral
        """
        dt = utils.Dtime("OverlapIntegral")
        self._summary = {}
        chans =self.getkey("chans")
        cmap = self.getkey("cmap")
        normalize = self.getkey("normalize")
        doCross = True
        doCross = False
        myplot = APlot(pmode=self._plot_mode,ptype=self._plot_type,abspath=self.dir())
        
        dt.tag("start")
 
        n = len(self._bdp_in)
        if n==0:
            raise Exception,"Need at least 1 input Image_BDP "
        logging.debug("Processing %d input maps" % n)
        data = range(n)     # array in which each element is placeholder for the data
        mdata = range(n)    # array to hold the max in each array
        summarytable = admit.util.Table()
        summarytable.columns = ["File name","Spectral Line ID"]
        summarytable.description = "Images used in Overlap Integral"
        for i in range(n):
            bdpfile = self._bdp_in[i].getimagefile(bt.CASA)
            if hasattr(self._bdp_in[i],"line"):
                line = getattr(self._bdp_in[i],"line")
                logging.info("Map %d: %s" % (i,line.uid))
                lineid = line.uid
            else:
                lineid="no line"
            data[i] = casautil.getdata(self.dir(bdpfile),chans)
            mdata[i] = data[i].max()
            logging.info("shape[%d] = %s with %d good data" % (i,data[i].shape,data[i].count()))
            if i==0:
                shape = data[i].shape
                outfile = self.mkext("testOI","oi")
            else:
                if shape != data[i].shape:
                    raise Exception,"Shapes not the same, cannot overlap them"
            # collect the file names and line identifications for the summary
            summarytable.addRow([bdpfile,lineid])
        logging.regression("OI: %s" % str(mdata))
                    
        if len(shape)>2 and shape[2] > 1:
            raise Exception,"Cannot handle 3D cubes yet"

        if doCross:
            # debug: produce all cross-corr's of the N input maps (expensive!)
            crossn(data, myplot)
            dt.tag("crossn")

        b1 = Image_BDP(outfile)
        self.addoutput(b1)
        b1.setkey("image", Image(images={bt.CASA:outfile}))

        dt.tag("open")

        useClone = True

        # to create an output dataset, clone the first input, but using the chans=ch0~ch1
        # e.g. using imsubimage(infile,outfile=,chans=
        if len(chans) > 0:
            # ia.regrid() doesn't have the chans=
            taskinit.ia.open(self.dir(self._bdp_in[0].getimagefile(bt.CASA)))
            taskinit.ia.regrid(outfile=self.dir(outfile))
            taskinit.ia.close()
        else:
            # 2D for now
            if not useClone:
                logging.info("OVERLAP out=%s" % outfile)
                taskinit.ia.fromimage(infile=self.dir(self._bdp_in[0].getimagefile(bt.CASA)),
                                      outfile=self.dir(outfile), overwrite=True)
                taskinit.ia.close()
        dt.tag("fromimage")


        if n==3:
            # RGB
            logging.info("RGB mode")
            out = rgb1(data[0],data[1],data[2], normalize)
        else:
            # simple sum
            out = data[0]
            for i in range(1,n):
                out = out + data[i]

        if useClone:
            casautil.putdata_raw(self.dir(outfile),out,clone=self.dir(self._bdp_in[0].getimagefile(bt.CASA)))
        else:
            taskinit.ia.open(self.dir(outfile))
            s1 = taskinit.ia.shape()
            s0 = [0,0,0,0]
            r1 = taskinit.rg.box(blc=s0,trc=s1)
            pixeldata = out.data
            pixelmask = ~out.mask
            taskinit.ia.putregion(pixels=pixeldata, pixelmask=pixelmask, region=r1)
            taskinit.ia.close()

        title = "OverlapIntegral"
        pdata = np.rot90(out.squeeze())
        logging.info("PDATA: %s" % str(pdata.shape))
        
        myplot.map1(pdata,title,"testOI",thumbnail=True,cmap=cmap)
        
        #-----------------------------
        # Populate summary information
        #-----------------------------
        taskargs = "chans=%s cmap=%s" % (chans, cmap)
        imname = ""
        thumbnailname = ""
        # uncomment when ready.
        imname = myplot.getFigure(figno=myplot.figno,relative=True)
        thumbnailname = myplot.getThumbnail(figno=myplot.figno,relative=True)
        #@todo fill in caption with more info - line names, etc.
        caption = "Need descriptive caption here"
        summaryinfo = [summarytable.serialize(),imname,thumbnailname,caption]
        self._summary["overlap"] = SummaryEntry(summaryinfo,
                                   "OverlapIntegral_AT",
                                   self.id(True),taskargs)
        #-----------------------------
        dt.tag("done")
        dt.end()
예제 #11
0
    def run(self):
        """Runs the task.

           Parameters
           ----------
           None

           Returns
           -------
           None
        """

        self._summary = {}
        dt = utils.Dtime("CubeSpectrum")

        # our BDP's
        # b1  = input BDP
        # b1s = optional input CubeSpectrum
        # b1m = optional input Moment
        # b1p = optional input SourceList for positions
        # b2  = output BDP

        b1 = self._bdp_in[0]                                            # check input SpwCube (or LineCube)
        fin = b1.getimagefile(bt.CASA)
        if self._bdp_in[0]._type == bt.LINECUBE_BDP:
            use_vel = True
        else:
            use_vel = False

        sources = self.getkey("sources")
        pos = []                     # blank it first, then try and grab it from the optional bdp_in's
        cmean  = 0.0
        csigma = 0.0
        smax  = []                   # accumulate max in each spectrum for regression
        self.spec_description = []   # for summary() 

        if self._bdp_in[1] != None:                                      # check if CubeStats_BDP
            #print "BDP[1] type: ",self._bdp_in[1]._type
            if self._bdp_in[1]._type != bt.CUBESTATS_BDP:
                raise Exception,"bdp_in[1] not a CubeStats_BDP, should never happen"
            # a table (cubestats)
            b1s = self._bdp_in[1]
            pos.append(b1s.maxpos[0])
            pos.append(b1s.maxpos[1])
            logging.info('CubeStats::maxpos,val=%s,%f' % (str(b1s.maxpos),b1s.maxval))
            cmean  = b1s.mean
            csigma = b1s.sigma
            dt.tag("CubeStats-pos")
            
        if self._bdp_in[2] != None:                                      # check if Moment_BDP (probably from CubeSum)
            #print "BDP[2] type: ",self._bdp_in[2]._type
            if self._bdp_in[2]._type != bt.MOMENT_BDP:
                raise Exception,"bdp_in[2] not a Moment_BDP, should never happen"
            b1m = self._bdp_in[2]
            fim = b1m.getimagefile(bt.CASA)
            pos1,maxval = self.maxpos_im(self.dir(fim))     # compute maxpos, since it is not in bdp (yet)
            logging.info('CubeSum::maxpos,val=%s,%f' % (str(pos1),maxval))
            pos.append(pos1[0])
            pos.append(pos1[1])
            dt.tag("Moment-pos")

        if self._bdp_in[3] != None:                                      # check if SourceList
            #print "BDP[3] type: ",self._bdp_in[3]._type
            # a table (SourceList)
            b1p = self._bdp_in[3]
            ra   = b1p.table.getFullColumnByName("RA")
            dec  = b1p.table.getFullColumnByName("DEC")
            peak = b1p.table.getFullColumnByName("Peak")
            if sources == []:
                # use the whole SourceList
                for (r,d,p) in zip(ra,dec,peak):
                  rdc = convert_sexa(r,d)
                  pos.append(rdc[0])
                  pos.append(rdc[1])
                  logging.info('SourceList::maxpos,val=%s,%f' % (str(rdc),p))
            else:                  
                # select specific ones from the source list
                for ipos in sources:
                    if ipos < len(ra):
                        radec =  convert_sexa(ra[ipos],dec[ipos])
                        pos.append(radec[0])
                        pos.append(radec[1])
                        logging.info('SourceList::maxpos,val=%s,%f' % (str(radec),peak[ipos]))
                    else:
                        logging.warning('Skipping illegal source number %d' % ipos)

            dt.tag("SourceList-pos")

        # if pos[] still blank, use the AT keyword.
        if len(pos) == 0:
            pos = self.getkey("pos")

        # if still none, try the map center
        if len(pos) == 0:
            # @todo  this could result in a masked pixel and cause further havoc
            # @todo  could also take the reference pixel, but that could be outside image
            taskinit.ia.open(self.dir(fin))
            s = taskinit.ia.summary()
            pos = [int(s['shape'][0])/2, int(s['shape'][1])/2]
            logging.warning("No input positions supplied, map center choosen: %s" % str(pos))
            dt.tag("map-center")

        # exhausted all sources where pos[] can be set; if still zero, bail out
        if len(pos) == 0:
            raise Exception,"No positions found from input BDP's or pos="

        # convert this regular list to a list of tuples with duplicates removed
        # sadly the order is lost.
        pos = list(set(zip(pos[0::2],pos[1::2])))
        npos = len(pos)
        
        dt.tag("open")

        bdp_name = self.mkext(fin,"csp")
        b2 = CubeSpectrum_BDP(bdp_name)
        self.addoutput(b2)

        imval  = range(npos)                             # spectra, one for each pos (placeholder)
        planes = range(npos)                             # labels for the tables (placeholder)
        images = {}                                      # png's accumulated

        for i in range(npos):                            # loop over pos, they can have mixed types now
            sd = []
            caption = "Spectrum"
            xpos = pos[i][0]
            ypos = pos[i][1]
            if type(xpos) != type(ypos):
                print "POS:",xpos,ypos
                raise Exception,"position pair not of the same type"
            if type(xpos)==int:
                # for integers, boxes are allowed, even multiple
                box = '%d,%d,%d,%d' % (xpos,ypos,xpos,ypos)
                # convention for summary is (box)
                cbox = '(%d,%d,%d,%d)' % (xpos,ypos,xpos,ypos)
                # use extend here, not append, we want individual values in a list
                sd.extend([xpos,ypos,cbox])
                caption = "Average Spectrum at %s" % cbox
                if False:
                    # this will fail on 3D cubes (see CAS-7648)
                    imval[i] = casa.imval(self.dir(fin),box=box)
                else:
                    # work around that CAS-7648 bug 
                    # another approach is the ia.getprofile(), see CubeStats, this will
                    # also integrate over regions, imval will not (!!!)
                    region = 'centerbox[[%dpix,%dpix],[1pix,1pix]]' % (xpos,ypos)
                    caption = "Average Spectrum at %s" % region
                    imval[i] = casa.imval(self.dir(fin),region=region)
            elif type(xpos)==str:
                # this is tricky, to stay under 1 pixel , or you get a 2x2 back.
                region = 'centerbox[[%s,%s],[1pix,1pix]]' % (xpos,ypos)
                caption = "Average Spectrum at %s" % region
                sd.extend([xpos,ypos,region])
                imval[i] = casa.imval(self.dir(fin),region=region)
            else:
                print "Data type: ",type(xpos)
                raise Exception,"Data type for region not handled"
            dt.tag("imval")

            flux  = imval[i]['data']
            if len(flux.shape) > 1:     # rare case if we step on a boundary between cells?
                logging.warning("source %d has spectrum shape %s: averaging the spectra" % (i,repr(flux.shape)))
                flux = np.average(flux,axis=0)
            logging.debug('minmax: %f %f %d' % (flux.min(),flux.max(),len(flux)))
            smax.append(flux.max())
            if i==0:                                              # for first point record few extra things
                if len(imval[i]['coords'].shape) == 2:                   # normal case: 1 pixel
                    freqs = imval[i]['coords'].transpose()[2]/1e9        # convert to GHz  @todo: input units ok?
                elif len(imval[i]['coords'].shape) == 3:                 # rare case if > 1 point in imval()
                    freqs = imval[i]['coords'][0].transpose()[2]/1e9     # convert to GHz  @todo: input units ok?
                else:
                    logging.fatal("bad shape %s in freq return from imval - SHOULD NEVER HAPPEN" % imval[i]['coords'].shape)
                chans = np.arange(len(freqs))                     # channels 0..nchans-1
                unit  = imval[i]['unit']
                restfreq = casa.imhead(self.dir(fin),mode="get",hdkey="restfreq")['value']/1e9    # in GHz
                dt.tag("imhead")
                vel   = (1-freqs/restfreq)*utils.c                #  @todo : use a function (and what about relativistic?)

            # construct the Table for CubeSpectrum_BDP 
            # @todo note data needs to be a tuple, later to be column_stack'd
            labels = ["channel" ,"frequency" ,"flux" ]
            units  = ["number"  ,"GHz"       ,unit   ]
            data   = (chans     ,freqs       ,flux   )

            if i==0:
                # plane 0 : we are allowing a multiplane table, so the first plane is special
                table = Table(columns=labels,units=units,data=np.column_stack(data),planes=["0"])
            else:
                # planes 1,2,3.... are stacked onto the previous one
                table.addPlane(np.column_stack(data),"%d" % i)

            # example plot , one per position for now
            if use_vel:
                x = vel
                xlab = 'VLSR (km/s)'
            else:
                x = chans
                xlab  = 'Channel'
            y = [flux]
            sd.append(xlab)
            if type(xpos)==int:
                # grab the RA/DEC... kludgy
                h = casa.imstat(self.dir(fin),box=box)
                ra  = h['blcf'].split(',')[0]
                dec = h['blcf'].split(',')[1]
                title = '%s %d @ %d,%d = %s,%s' % (bdp_name,i,xpos,ypos,ra,dec)
            else:
                title = '%s %d @ %s,%s' % (bdp_name,i,xpos,ypos)       # or use box, once we allow non-points

            myplot = APlot(ptype=self._plot_type,pmode=self._plot_mode, abspath=self.dir())
            ylab  = 'Flux (%s)' % unit
            p1 = "%s_%d" % (bdp_name,i)
            myplot.plotter(x,y,title,p1,xlab=xlab,ylab=ylab,thumbnail=True)
            # Why not use p1 as the key?
            ii = images["pos%d" % i] = myplot.getFigure(figno=myplot.figno,relative=True)
            thumbname = myplot.getThumbnail(figno=myplot.figno,relative=True)
            sd.extend([ii, thumbname, caption, fin])
            self.spec_description.append(sd)

        logging.regression("CSP: %s" % str(smax))

        image = Image(images=images, description="CubeSpectrum")
        b2.setkey("image",image)
        b2.setkey("table",table)
        b2.setkey("sigma",csigma)   # TODO: not always available
        b2.setkey("mean",cmean)     # TODO: not always available

        if True:
            #       @todo     only first plane due to limitation in exportTable()
            islash = bdp_name.find('/')
            if islash < 0:
                tabname = self.dir("testCubeSpectrum.tab")
            else:
                tabname = self.dir(bdp_name[:islash] + "/testCubeSpectrum.tab")
            table.exportTable(tabname,cols=["frequency" ,"flux"])
        dt.tag("done")
        # For a single spectrum this is
        # SummaryEntry([[data for spec1]], "CubeSpectrum_AT",taskid)
        # For multiple spectra this is
        # SummaryEntry([[data for spec1],[data for spec2],...], "CubeSpectrum_AT",taskid)
        self._summary["spectra"] = SummaryEntry(self.spec_description,"CubeSpectrum_AT",self.id(True))
        taskargs = "pos="+str(pos)
        taskargs += '&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; <span style="background-color:white">&nbsp;' + fin.split('/')[0] + '&nbsp;</span>'
        for v in self._summary:
            self._summary[v].setTaskArgs(taskargs)
        dt.tag("summary")
        dt.end()
예제 #12
0
파일: Ingest_AT.py 프로젝트: teuben/admit
    def run(self):
        # 
        self._summary = {}                  # prepare to make a summary here
        dt = utils.Dtime("Ingest")          # timer for debugging

        do_cbeam = True                     # enforce a common beam
        #
        pb = self.getkey('pb')
        do_pb = len(pb) > 0
        use_pb = self.getkey("usepb")
        # 
        create_mask = self.getkey('mask')   # create a new mask ?
        box   = self.getkey("box")          # corners in Z, XY or XYZ
        edge  = self.getkey("edge")         # number of edge channels to remove
        restfreq = self.getkey("restfreq")  # < 0 means not activated

        # smooth=  could become deprecated, and/or include a decimation option to make it useful
        #          again, Smooth_AT() does this also , at the cost of an extra cube to store
        smooth = self.getkey("smooth")      # 
        #
        vlsr = self.getkey("vlsr")          # see also LineID, where this could be given again

        # first place a fits file in the admit project directory (symlink)
        # this is a bit involved, depending on if an absolute or relative path was
        # give to Ingest_AT(file=)
        fitsfile = self.getkey('file')
        if fitsfile[0] != os.sep:
            fitsfile = os.path.abspath(os.getcwd() + os.sep + fitsfile)
        logging.debug('FILE=%s' % fitsfile)
        if fitsfile[0] != os.sep:
            raise Exception,"Bad file=%s, expected absolute name",fitsfile

        # now determine if it could have been a CASA (or MIRIAD) image already 
        # which we'll assume if it's a directory; this is natively supported by CASA
        # but there are tools where if you pass it a FITS or MIRIAD
        # MIRIAD is not recommended for serious work, especially big files, since there
        # is a performance penalty due to tiling.
        file_is_casa = casautil.iscasa(fitsfile)

        loc = fitsfile.rfind(os.sep)               # find the '/'
        ffile0 = fitsfile[loc+1:]                  # basename.fits
        basename = self.getkey('basename')         # (new) basename allowed (allow no dots?)
        if len(basename) == 0:
            basename = ffile0[:ffile0.rfind('.')]  # basename
        logging.info("basename=%s" % basename)
        target = self.dir(ffile0)

        if not os.path.exists(target) :
            cmd = 'ln -s "%s" "%s"' % (fitsfile, target)
            logging.debug("CMD: %s" % cmd)
            os.system(cmd)

        readonly = False
        if file_is_casa:
            logging.debug("Assuming input %s is a CASA (or MIRIAD) image" % ffile0)
            bdpfile = self.mkext(basename,"im")
            if bdpfile == ffile0:
                logging.warning("No selections allowed on CASA image, since no alias was given")
                readonly = True
            b1  = SpwCube_BDP(bdpfile)
            self.addoutput(b1)
            b1.setkey("image", Image(images={bt.CASA:bdpfile}))
            # @todo b2 and PB?
        else:
            # construct the output name and construct the BDP based on the CASA image name
            # this also takes care of the behind the scenes alias= substitution
            bdpfile = self.mkext(basename,"im")
            if bdpfile == basename:
                raise Exception,"basename and bdpfile are the same, Ingest_AT needs a fix for this"
            b1  = SpwCube_BDP(bdpfile)
            self.addoutput(b1)
            if do_pb:
                print "doing the PB"
                bdpfile2 = self.mkext(basename,"pb")
                b2 = Image_BDP(bdpfile2)
                self.addoutput(b2)

        # @todo    we should also set readonly=True if no box, no mask etc. and still an alias
        #          that way it will speed up and not make a copy of the image ?

        # fni and fno are full (abspath) filenames, ready for CASA
        # fni is the same as fitsfile
        fni = self.dir(ffile0)
        fno = self.dir(bdpfile)
        if do_pb: fno2 = self.dir(bdpfile2)
        dt.tag("start")

        if file_is_casa:
            taskinit.ia.open(fni)
        else:
            if do_pb and use_pb:
                # @todo   this needs a fix for the path for pb, only works if abs path is given
                # impbcor(im.fits,pb.fits,out.im,overwrite=True,mode='m')
                if False:
                    # this may seem like a nice shortcut, to have the fits->casa conversion be done
                    # internally in impbcor, but it's a terrible performance for big cubes. (tiling?)
                    # we keep this code here, perhaps at some future time (mpi?) this performs better
                    # @todo fno2
                    impbcor(fni,pb,fno,overwrite=True,mode='m')
                    dt.tag("impbcor-1")
                else:
                    # the better way is to convert FITS->CASA and then call impbcor()
                    # the CPU savings are big, but I/O overhead can still be substantial
                    taskinit.ia.fromfits('_pbcor',fni,overwrite=True)
                    taskinit.ia.fromfits('_pb',pb,overwrite=True)
                    dt.tag("impbcor-1f")
                    if False:
                        impbcor('_pbcor','_pb',fno,overwrite=True,mode='m')
                        # @todo fno2
                        utils.remove('_pbcor')
                        utils.remove('_pb')
                        dt.tag("impbcor-2")
                    else:
                        # immath appears to be even faster (2x in CPU)
                        # https://bugs.nrao.edu/browse/CAS-8299
                        # @todo  this needs to be confirmed that impbcor is now good to go (r36078)
                        casa.immath(['_pbcor','_pb'],'evalexpr',fno,'IM0*IM1')
                        dt.tag("immath")
                        if True:
                            # use the mean of all channels... faster may be to use the middle plane
                            # barf; edge channels can be with fewer subfields in a mosaic 
                            taskinit.ia.open('_pb')
                            taskinit.ia.summary()
                            ia1=taskinit.ia.moments(moments=[-1],drop=True,outfile=fno2)
                            ia1.done()
                            taskinit.ia.close()
                            dt.tag("moments")
                        utils.remove('_pbcor')
                        utils.remove('_pb')
                        dt.tag("impbcor-3")
            elif do_pb and not use_pb:
                # cheat case: PB was given, but not meant to be used
                # not implemented yet
                print "cheat case dummy PB not implemented yet"
            else:
                # no PB given
                if True:
                    # re-running this was more consistently faster in wall clock time
                    # note that zeroblanks=True will still keep the mask
                    logging.debug("casa::ia.fromfits(%s) -> %s" % (fni,bdpfile))
                    taskinit.ia.fromfits(fno,fni,overwrite=True)
                    #taskinit.ia.fromfits(fno,fni,overwrite=True,zeroblanks=True)
                    dt.tag("fromfits")
                else:
                    # not working to extend 3D yet, but this would solve the impv() 3D problem
                    logging.debug("casa::importfits(%s) -> %s" % (fni,bdpfile))
                    #casa.importfits(fni,fno,defaultaxes=True,defaultaxesvalues=[None,None,None,'I'])
                    # possible bug: zeroblanks=True has no effect?
                    casa.importfits(fni,fno,zeroblanks=True)
                    dt.tag("importfits")
            taskinit.ia.open(fno)
            if len(smooth) > 0:
                # smooth here, but Smooth_AT is another option
                # here we only allow pixel smoothing
                # spatial: gauss
                # spectral: boxcar/hanning (check for flux conservation)
                #     is the boxcar wrong, not centered, but edged?
                # @todo CASA BUG:  this will loose the object name (and maybe more?) from header, so VLSR lookup fails
                fnos = fno + '.smooth'
                taskinit.ia.convolve2d(outfile=fnos, overwrite=True, pa='0deg',
                                       major='%gpix' % smooth[0], minor='%gpix' % smooth[1], type='gaussian')
                taskinit.ia.close()
                srcname = casa.imhead(fno,mode="get",hdkey="object")          # work around CASA bug
                #@todo use safer ia.rename() here.
                # https://casa.nrao.edu/docs/CasaRef/image.rename.html
                utils.rename(fnos,fno)
                casa.imhead(fno,mode="put",hdkey="object",hdvalue=srcname)    # work around CASA bug
                dt.tag("convolve2d")
                if len(smooth) > 2 and smooth[2] > 0:
                    if smooth[2] == 1:
                        # @todo only 1 channel option
                        specsmooth(fno,fnos,axis=2,function='hanning',dmethod="")
                    else:
                        # @todo may have the wrong center
                        specsmooth(fno,fnos,axis=2,function='boxcar',dmethod="",width=smooth[2])
                    #@todo use safer ia.rename() here.
                    # https://casa.nrao.edu/docs/CasaRef/image.rename.html
                    utils.rename(fnos,fno)
                    dt.tag("specsmooth")
                taskinit.ia.open(fno)

            s = taskinit.ia.summary()
            if len(s['shape']) != 4:
                logging.warning("Adding dummy STOKES-I axis")
                fnot = fno + '_4'
                taskinit.ia.adddegaxes(stokes='I',outfile=fnot)
                taskinit.ia.close()
                #@todo use safer ia.rename() here.
                # https://casa.nrao.edu/docs/CasaRef/image.rename.html
                utils.rename(fnot,fno)
                taskinit.ia.open(fno)
                dt.tag("adddegaxes")
            else:
                logging.info("SHAPE: %s" % str(s['shape']))
        s = taskinit.ia.summary()
        dt.tag("summary-0")
        if s['hasmask'] and create_mask:
            logging.warning("no extra mask created because input image already had one")
            create_mask = False

        # if a box= or edge= was given, only a subset of the cube needs to be ingested
        # this however complicates PB correction later on
        if len(box) > 0 or len(edge) > 0:
            if readonly:
                raise Exception,"Cannot use box= or edge=, data is read-only, or use an basename/alias"
            if len(edge) == 1:  edge.append(edge[0])

            nx = s['shape'][0]
            ny = s['shape'][1]
            nz = s['shape'][2]
            logging.info("box=%s edge=%s processing with SHAPE: %s" % (str(box),str(edge),str(s['shape'])))
                                                                                                 
            if len(box) == 2:
                # select zrange
                if len(edge)>0:
                    raise Exception,"Cannot use edge= when box=[z1,z2] is used"
                r1 = taskinit.rg.box([0,0,box[0]] , [nx-1,ny-1,box[1]])
            elif len(box) == 4:
                if len(edge) == 0:
                    # select just an XY box
                    r1 = taskinit.rg.box([box[0],box[1]] , [box[2],box[3]])
                elif len(edge) == 2:
                    # select an XY box, but remove some edge channels
                    r1 = taskinit.rg.box([box[0],box[1],edge[0]] , [box[2],box[3],nz-edge[1]-1])
                else:
                    raise Exception,"Bad edge= for len(box)=4"
            elif len(box) == 6:
                # select an XYZ box
                r1 = taskinit.rg.box([box[0],box[1],box[2]] , [box[3],box[4],box[5]])
            elif len(edge) == 2:
                # remove some edge channels, but keep the whole XY box
                r1 = taskinit.rg.box([0,0,edge[0]] , [nx-1,ny-1,nz-edge[1]-1])
            else:
                raise Exception,"box=%s illegal" % box
            logging.debug("BOX/EDGE selection: %s %s" % (str(r1['blc']),str(r1['trc']))) 
            #if taskinit.ia.isopen(): taskinit.ia.close()

            logging.info("SUBIMAGE")
            subimage = taskinit.ia.subimage(region=r1,outfile=fno+'.box',overwrite=True)
            taskinit.ia.close()
            taskinit.ia.done()
            subimage.rename(fno,overwrite=True)
            subimage.close()
            subimage.done()
            taskinit.ia.open(fno)
            dt.tag("subimage-1")
        else:
            # the whole cube is passed onto ADMIT
            if readonly and create_mask:
                raise Exception,"Cannot use mask=True, data read-only, or use an alias"
            if file_is_casa and not readonly:
                # @todo a miriad file - which should be read only - will also create a useless copy here if no alias used
                taskinit.ia.subimage(overwrite=True,outfile=fno)
                taskinit.ia.close()
                taskinit.ia.open(fno)
                dt.tag("subimage-0")

        if create_mask:
            if readonly:
                raise Exception,"Cannot create mask, data read-only, or use an alias"
            # also check out the 'fromfits::zeroblanks = False'
            # calcmask() will overwrite any previous pixelmask
            #taskinit.ia.calcmask('mask("%s") && "%s" != 0.0' % (fno,fno))
            taskinit.ia.calcmask('"%s" != 0.0' % fno)
            dt.tag("mask")

        s = taskinit.ia.summary()
        dt.tag("summary-1")

        # do a fast statistics (no median or robust)
        s0 = taskinit.ia.statistics()
        dt.tag("statistics")
        if len(s0['npts']) == 0:
            raise Exception,"No statistics possible, are there valid data in this cube?"
        # There may be multiple beams per plane so we can't
        # rely on the BEAM's 'major', 'minor', 'positionangle' being present.
        # ia.commonbeam() is guaranteed to return beam parameters
        # if present
        if do_cbeam and s.has_key('perplanebeams'):
            # report on the beam extremities, need to loop over all, 
            # first and last don't need to be extremes....
            n = s['perplanebeams']['nChannels']
            ab0 = '*0'
            bb0 = s['perplanebeams']['beams'][ab0]['*0']
            bmaj0 = bb0['major']['value']
            bmin0 = bb0['minor']['value']
            beamd = 0.0
            for i in range(n):
                ab1 = '*%d' % i
                bb1 = s['perplanebeams']['beams'][ab1]['*0']
                bmaj1 = bb1['major']['value']
                bmin1 = bb1['minor']['value']
                beamd = max(beamd,abs(bmaj0-bmaj1),abs(bmin0-bmin1))
            logging.warning("MAX-BEAMSPREAD %f" % (beamd))
            #
            if True:
                logging.info("Applying a commonbeam from the median beam accross the band")
                # imhead is a bit slow; alternatively use ia.summary() at the half point for setrestoringbeam()
                h = casa.imhead(fno,mode='list')
                b = h['perplanebeams']['median area beam']
                taskinit.ia.setrestoringbeam(remove=True)
                taskinit.ia.setrestoringbeam(beam=b)
                commonbeam = taskinit.ia.commonbeam()

            else:
                # @todo : this will be VERY slow - code not finished, needs renaming etc.
                #         this is however formally the better solution
                logging.warning("commmonbeam code not finished")
                cb = taskinit.ia.commonbeam()
                taskinit.ia.convolve2d(outfile='junk-common.im', major=cb['major'], minor=cb['minor'], pa=cb['pa'], 
                                       targetres=True, overwrite=True)
                dt.tag('convolve2d')
                commonbeam = {}
        else:
            try:
                commonbeam = taskinit.ia.commonbeam()
            except:
                nppb = 4.0
                logging.warning("No synthesized beam found, faking one to prevent downstream problems: nppb=%f" % nppb)
                s = taskinit.ia.summary()
                cdelt2 = abs(s['incr'][0]) * 180.0/math.pi*3600.0
                bmaj = nppb * cdelt2      # use a nominal 4 points per (round) beam 
                bmin = nppb * cdelt2
                bpa  = 0.0
                taskinit.ia.setrestoringbeam(major='%farcsec' % bmaj, minor='%farcsec' % bmin, pa='%fdeg' % bpa)
                commonbeam = {}
        logging.info("COMMONBEAM[%d] %s" % (len(commonbeam),str(commonbeam)))

        first_point = taskinit.ia.getchunk(blc=[0,0,0,0],trc=[0,0,0,0],dropdeg=True)
        logging.debug("DATA0*: %s" % str(first_point))

        taskinit.ia.close()
        logging.info('BASICS: [shape] npts min max: %s %d %f %f' % (s['shape'],s0['npts'][0],s0['min'][0],s0['max'][0]))
        logging.info('S/N (all data): %f' % (s0['max'][0]/s0['rms'][0]))
        npix = 1
        nx = s['shape'][0]
        ny = s['shape'][1]
        nz = s['shape'][2]
        for n in s['shape']:
            npix = npix * n
        ngood = int(s0['npts'][0])
        fgood = (1.0*ngood)/npix
        logging.info('GOOD PIXELS: %d/%d (%f%% good or %f%% bad)' % (ngood,npix,100.0*fgood,100.0*(1 - fgood)))
        if s['hasmask']:
            logging.warning('MASKS: %s' % (str(s['masks'])))

        if not file_is_casa:
            b1.setkey("image", Image(images={bt.CASA:bdpfile}))
            if do_pb:
                b2.setkey("image", Image(images={bt.CASA:bdpfile2}))            

        # cube sanity: needs to be either 4D or 2D. But p-p-v cube
        # alternative: ia.subimage(dropdeg = True)
        # see also: https://bugs.nrao.edu/browse/CAS-5406
        shape = s['shape']
        if len(shape)>3:
            if shape[3]>1:
                # @todo this happens when you ingest a fits or casa image which is ra-dec-pol-freq
                if nz > 1:
                    msg = 'Ingest_AT: cannot deal with real 4D cubes yet'
                    logging.critical(msg)
                    raise Exception,msg
                else:
                    # @todo this is not working yet when the input was a casa image, but ok when fits. go figure.
                    fnot = fno + ".trans"
                    if True:
                        # this works
            #@todo use safer ia.rename() here.
            # https://casa.nrao.edu/docs/CasaRef/image.rename.html
                        utils.rename(fno,fnot)
                        imtrans(fnot,fno,"0132")
                        utils.remove(fnot)
                    else:
                        # this does not work, what the heck
                        imtrans(fno,fnot,"0132")
            #@todo use safer ia.rename() here.
            # https://casa.nrao.edu/docs/CasaRef/image.rename.html
                        utils.rename(fnot,fno)
                    nz = s['shape'][3]
                    # get a new summary 's'
                    taskinit.ia.open(fno)
                    s = taskinit.ia.summary()
                    taskinit.ia.close()
                    logging.warning("Using imtrans, with nz=%d, to fix axis ordering" % nz)
                    dt.tag("imtrans4")
            # @todo  ensure first two axes are position, followed by frequency
        elif len(shape)==3:
            # the current importfits() can do defaultaxes=True,defaultaxesvalues=['', '', '', 'I']
            # but then appears to return a ra-dec-pol-freq cube
            # this branch probably never happens, since ia.fromfits() will 
            # properly convert a 3D cube to 4D now !!
            # NO: when NAXIS=3 but various AXIS4's are present, that works. But not if it's pure 3D
            # @todo  box=
            logging.warning("patching up a 3D to 4D cube")
            raise Exception,"SHOULD NEVER GET HERE"
            fnot = fno + ".trans"
            casa.importfits(fni,fnot,defaultaxes=True,defaultaxesvalues=['', '', '', 'I'])
            utils.remove(fno)        # ieck
            imtrans(fnot,fno,"0132")
            utils.remove(fnot)
            dt.tag("imtrans3")

        logging.regression('CUBE: %g %g %g  %d %d %d  %f' % (s0['min'],s0['max'],s0['rms'],nx,ny,nz,100.0*(1 - fgood)))

        # if the cube has only 1 plane (e.g. continuum) , create a visual (png or so)
        # for 3D cubes, rely on something like CubeSum
        if nz == 1:
            implot = ImPlot(pmode=self._plot_mode,ptype=self._plot_type,abspath=self.dir())
            implot.plotter(rasterfile=bdpfile,figname=bdpfile)
            # @todo needs to be registered for the BDP, right now we only have the plot

        # ia.summary() doesn't have this easily available, so run the more expensive imhead()
        h = casa.imhead(fno,mode='list')
        telescope = h['telescope']
        # work around CASA's PIPELINE bug/feature?   if 'OBJECT' is blank, try 'FIELD'
        srcname = h['object']
        if srcname == ' ':
            logging.warning('FIELD used for OBJECT')
            srcname = casa.imhead(fno,mode='get',hdkey='field')
            if srcname == False:
                # if no FIELD either, we're doomed.  yes, this did happen.
                srcname = 'Unknown'
            casa.imhead(fno,mode="put",hdkey="object",hdvalue=srcname)
            h['object'] = srcname
        logging.info('TELESCOPE: %s' % telescope)
        logging.info('OBJECT: %s' % srcname)
        logging.info('REFFREQTYPE: %s' % h['reffreqtype'])
        if h['reffreqtype'].find('TOPO')>=0:
            msg = 'Ingest_AT: cannot deal with cubes with TOPOCENTRIC frequencies yet - winging it'
            logging.warning(msg)
            #raise Exception,msg
        # Ensure beam parameters are available if there are multiple beams
        # If there is just one beam, then we are just overwriting the header
        # variables with their identical values.
        if len(commonbeam) != 0:
            h['beammajor'] = commonbeam['major']
            h['beamminor'] = commonbeam['minor']
            h['beampa']    = commonbeam['pa']
        # cheat add some things that need to be passed to summary....
        h['badpixel'] = 1.0-fgood
        if vlsr < -999998.0:
            vlsr          = admit.VLSR().vlsr(h['object'].upper()) 
        h['vlsr']     = vlsr
        logging.info("VLSR = %f (from source catalog)" % vlsr)
        
        taskargs = "file=" + fitsfile
        if create_mask == True:
            taskargs = taskargs + " mask=True" 
        if len(box) > 0:
            taskargs = taskargs + " " + str(box)
        if len(edge) > 0:
            taskargs = taskargs + " " + str(edge)
        r2d = 57.29577951308232
        logging.info("RA   Axis 1: %f %f %f" % (h['crval1']*r2d,h['cdelt1']*r2d*3600.0,h['crpix1']))
        logging.info("DEC  Axis 2: %f %f %f" % (h['crval2']*r2d,h['cdelt2']*r2d*3600.0,h['crpix2']))
        if nz > 1:
            # @todo check if this is really a freq axis (for ALMA it is, but...)
            t3 = h['ctype3']
            df = h['cdelt3']
            fc = h['crval3'] + (0.5*(float(shape[2])-1)-h['crpix3'])*df        # center freq; 0 based pixels
            if h.has_key('restfreq'):
                fr = float(h['restfreq'][0])
            else:
                fr = fc
            fw = df*float(shape[2])
            dv = -df/fr*utils.c 
            logging.info("Freq Axis 3: %g %g %g" % (h['crval3']/1e9,h['cdelt3']/1e9,h['crpix3']))
            logging.info("Cube Axis 3: type=%s  velocity increment=%f km/s @ fc=%f fw=%f GHz" % (t3,dv,fc/1e9,fw/1e9))
        # @todo sort out this restfreq/vlsr
        # report 'reffreqtype', 'restfreq' 'telescope'
        # if the fits file has ALTRVAL/ALTRPIX, this is lost in CASA?
        # but if you do fits->casa->fits , it's back in fits (with some obvious single precision loss of digits)
        # @todo ZSOURCE is the proposed VLSR slot in the fits header, but this has frame issues (it's also optical)
        #
        # Another method to get the vlsr is to override the restfreq (f0) with an AT keyword
        # and the 'restfreq' from the header (f) is then used to compute the vlsr:   v = c (1 - f/f0)
        #
        if shape[2] > 1 and h.has_key('restfreq'):
            logging.info("RESTFREQ: %g %g %g" % (fr/1e9,h['restfreq'][0]/1e9,restfreq))
            if shape[2] > 1:
                # v_radio of the center of the window w.r.t. restfreq
                c = utils.c             # 299792.458 km/s
                vlsrc = c*(1-fc/fr)     # @todo rel frame?
                vlsrw = dv*float(shape[2])
                if restfreq > 0:
                    vlsrf = c*(1-fr/restfreq/1e9)
                    h['vlsr'] = vlsrf
                else:
                    vlsrf = 0.0
                logging.info("VLSRc = %f  VLSRw = %f  VLSRf = %f VLSR = %f" % (vlsrc, vlsrw, vlsrf, vlsr))
                if h['vlsr'] == 0.0: # @todo! This fails if vlsr actually is zero. Need another magic number
                    h['vlsr'] = vlsrc
                    logging.warning("Warning: No VLSR found, substituting VLSRc = %f" % vlsrc)
        else:
            msg = 'Ingest_AT: missing RESTFREQ'
            print msg
        # @todo   LINTRN  is the ALMA keyword that designates the expected line transition in a spw

        self._summarize(fitsfile, bdpfile, h, shape, taskargs)

        dt.tag("done")
        dt.end()
예제 #13
0
파일: Smooth_AT.py 프로젝트: teuben/admit
    def run(self):
        """ The run method creates the BDP

            Parameters
            ----------
            None

            Returns
            -------
            None
        """
        self._summary = {}
        dt = utils.Dtime("Smooth")
        dt.tag("start")
        # get the input keys
        bmaj   = self.getkey("bmaj")
        bmin   = self.getkey("bmin")
        bpa    = self.getkey("bpa")
        velres = self.getkey("velres")

        # take care of potential issues in the unit strings
        # @todo  if not provided?
        bmaj['unit'] = bmaj['unit'].lower()
        bmin['unit'] = bmin['unit'].lower()
        velres['unit'] = velres['unit'].lower()
        taskargs = "bmaj=%s bmin=%s bpa=%s velres=%s" % (bmaj,bmin,bpa,velres)
        

        bdpnames=[]
        for ibdp in self._bdp_in:
            istem = ibdp.getimagefile(bt.CASA)
            image_in = ibdp.baseDir() + istem

            bdp_name = self.mkext(istem,'sim')
            image_out = self.dir(bdp_name)
          
            taskinit.ia.open(image_in)        
            h = casa.imhead(image_in, mode='list')
            pix_scale = np.abs(h['cdelt1'] * 206265.0) # pix scale in asec @todo QA ?
            CC = 299792458.0 # speed of light  @todo somewhere else   [utils.c , but in km/s]

            rest_freq = h['crval3']
            # frequency pixel scale in km/s 
            vel_scale = np.abs(CC*h['cdelt3']/rest_freq/1000.0)

            # unit conversion to arcsec (spatial) or km/s 
            # (velocity) or some flavor of Hz.

            if(bmaj['unit'] == 'pixel'):
                bmaj = bmaj['value']*pix_scale
            else:
                bmaj = bmaj['value']
            if(bmin['unit'] == 'pixel'):
                bmin = bmin['value']*pix_scale
            else:
                bmin = bmin['value']

            hertz_input = False
            if velres['unit'] == 'pixel':
                velres['value'] = velres['value']*vel_scale
                velres['unit'] = 'km/s'
            elif velres['unit'] == 'm/s':
                velres['value'] = velres['value']/1000.0
                velres['unit'] = 'km/s'
            elif velres['unit'][-2:] == 'hz':
                hertz_input = True
            elif velres['unit'] == 'km/s':
                pass
            else:
                logging.error("Unknown units in velres=%s" % velres['unit'])

            rdata = bmaj

            # we smooth in velocity first. if smoothing in velocity
            # the cube apparently must be closed afterwards and 
            # then reopened if spatial smoothing is to be done.

            if velres['value'] > 0:
                # handle the different units allowed. CASA doesn't
                # like lowercase for hz units...          
                if not hertz_input:
                    freq_res = str(velres['value']*1000.0/CC *rest_freq )+'Hz'
                else:
                    freq_res = str(velres['value'])
                    # try to convert velres to km/s for debug purposes
                    velres['value'] = velres['value']/rest_freq*CC / 1000.0 
                    if(velres['unit'] == 'khz'):
                        velres['value'] = velres['value']*1000.0
                        velres['unit'] = 'kHz'
                    elif(velres['unit']=='mhz'):
                        velres['value'] = velres['value']*1E6
                        velres['unit'] = 'MHz'
                    elif(velres['unit']=='ghz'):
                        velres['value'] = velres['value']*1E9
                        velres['unit'] = 'GHz'
                    freq_res = freq_res + velres['unit']

                # NB: there is apparently a bug in CASA. only smoothing along the frequency
                # axis does not work. sepconvolve gives a unit error (says axis unit is radian rather 
                # than Hz). MUST smooth in 2+ dimensions if you want this to work.

                if(velres['value'] < vel_scale):
                    raise Exception,"Desired velocity resolution %g less than pixel scale %g" % (velres['value'],vel_scale)
                image_tmp = self.dir('tmp.smooth')
                im2=taskinit.ia.sepconvolve(outfile=image_tmp,axes=[0,1,2], types=["boxcar","boxcar","gauss"],\
                                              widths=['1pix','1pix',freq_res], overwrite=True)
                im2.done()
                logging.debug("sepconvolve to %s" % image_out)
                # for some reason, doing this in memory does not seem to work, so outfile must be specified.

                logging.info("Smoothing cube to a velocity resolution of %s km/s" % str(velres['value']))
                logging.info("Smoothing cube to a frequency resolution of %s" % freq_res)
                taskinit.ia.close()
                taskinit.ia.open(image_tmp)
                dt.tag("sepconvolve")
            else:
                image_tmp = image_out

            # now do the spatial smoothing 

            convolve_to_min_beam = True                     # default is to convolve to a min enclosing beam

            if bmaj > 0 and bmin > 0:
                # form qa objects out of these so that casa can understand
                bmaj = taskinit.qa.quantity(bmaj,'arcsec')
                bmin = taskinit.qa.quantity(bmin,'arcsec')
                bpa  = taskinit.qa.quantity(bpa,'deg')

                target_res={}
                target_res['major'] = bmaj
                target_res['minor'] = bmin
                target_res['positionangle'] = bpa

                # throw an exception if cannot be convolved

                try:
                    # for whatever reason, if you give convolve2d a beam parameter,
                    # it complains ...
                    im2=taskinit.ia.convolve2d(outfile=image_out,major = bmaj,\
                                             minor = bmin, pa = bpa,\
                                             targetres=True,overwrite=True)
                    im2.done()
                    logging.info("Smoothing cube to a resolution of %s by %s at a PA of %s" %
                                      (str(bmaj['value']), str(bmin['value']), str(bpa['value'])))
                    convolve_to_min_beam = False
                    achieved_res = target_res
                except:
                    # @todo   remind what you need ?
                    logging.error("Warning: Could not convolve to requested resolution of "\
                            +str(bmaj['value']) + " by " + str(bmin['value']) + \
                            " at a PA of "+ str(bpa['value']))
                    raise Exception,"Could not convolve to beam given!"
            dt.tag("convolve2d-1")

            if convolve_to_min_beam:
                restoring_beams = taskinit.ia.restoringbeam()
                commonbeam = taskinit.ia.commonbeam()
                # for whatever reason, setrestoringbeam does not use the same set of hashes...
                commonbeam['positionangle']=commonbeam['pa']
                del commonbeam['pa']

                # if there's one beam, apparently the beams keyword does not exist
                if 'beams' in restoring_beams: 
                    print "Smoothing cube to a resolution of "+  \
                         str(commonbeam['major']['value']) +" by "+ \
                         str(commonbeam['minor']['value'])+" at a PA of "\
                        +str(commonbeam['pa']['value'])  
                    target_res = commonbeam
                    im2=taskinit.ia.convolve2d(outfile=image_out,major=commonbeam['major'],\
                                               minor=commonbeam['minor'],\
                                               pa=commonbeam['positionangle'],\
                                               targetres=True,overwrite=True)
                    im2.done()
                    achieved_res = commonbeam
                    dt.tag("convolve2d-2")
                else:
                    print "One beam for all planes. Smoothing to common beam redundant."
                    achieved_res = commonbeam 
                    if velres['value'] < 0:
                        taskinit.ia.fromimage(outfile=image_out, infile=image_in)
                    # not really doing anything
                # else, we've already done what we needed to

                taskinit.ia.setrestoringbeam(beam = achieved_res)
                rdata = achieved_res['major']['value']

            # else do no smoothing and just close the image

            taskinit.ia.close() 
            dt.tag("close")

            b1 = SpwCube_BDP(bdp_name)
            self.addoutput(b1) 
            # need to update for multiple images.

            b1.setkey("image", Image(images={bt.CASA:bdp_name}))

            bdpnames = bdpnames.append(bdp_name)

            # and clean up the temp image before the next image
            if velres['value'] > 0:
                utils.remove(image_tmp)

        # thes are task arguments not summary entries.
        _bmaj = taskinit.qa.convert(achieved_res['major'],'rad')['value']
        _bmin = taskinit.qa.convert(achieved_res['minor'],'rad')['value']
        _bpa = taskinit.qa.convert(achieved_res['positionangle'],'deg')['value']
        vres = "%.2f %s" % (velres['value'],velres['unit'])

        logging.regression("SMOOTH: %f %f" % (rdata,velres['value']))
       
        self._summary["smooth"] = SummaryEntry([bdp_name,convolve_to_min_beam,_bmaj,_bmin,_bpa,vres],"Smooth_AT",self.id(True),taskargs)
        dt.tag("done")
        dt.end()
예제 #14
0
    def find(self):
        """ Method that does the segment finding

            Parameters
            ----------
            None

            Returns
            -------
            Tuple containing a list of the segments, the cutoff used, the
            noise level, and a mean baseline.

        """
        if self.abs:
            self.spec = abs(self.spec)
        temp = np.zeros(len(self.spec))
        #self.see = ma.masked_array(temp, mask=self.spec.mask)
        # parameters (some now from the function argument)
        logging.debug("MIN/MAX " + str(self.spec.min()) + " / " +\
            str(self.spec.max()))
        n = len(self.spec)  # data and freq assumed to be same size
        if self.hanning:
            h = np.hanning(5) / 2  # normalize the convolution array
            h = np.array([0.25, 0.5, 0.25])
            data2 = np.convolve(self.spec, h, 'same')
        else:
            data2 = self.spec
        if len(data2) != len(self.freq):
            raise Exception("ulines: data2 and freq not same array")

        # do the work
        dr = stats.robust(data2, self.f)
        noise = dr.std()
        logging.debug("ROBUST: (mean/median/noise) " + \
            str(dr.mean()) + " / " + str(ma.median(dr)) + " / " + str(noise))
        #print "\n\nD2",data2,"\n"
        data3 = ma.masked_invalid(data2)
        #print "\n\nD3\n",data3,"\n"
        ddiff = data3[1:n] - data3[0:n - 1]
        logging.debug("DIFF: (mean/stdev) " + str(ddiff.mean()) +\
            " / " + str(ddiff.std()))
        #print "\n\n",ddiff,"\n",self.f,"\n"
        ddr = stats.robust(ddiff, self.f)
        logging.debug("RDIFF: (mean/median/stdev) " + \
            str(ddr.mean()) + " / " + str(ma.median(ddr)) + " / " + \
            str(ddr.std()))
        #plt.show()
        if self.bottom:
            # first remind the classic
            dmean1 = dr.mean()
            dstd1 = dr.std()
            logging.debug("CLASSIC MEAN/SIGMA: " + str(dmean1) + \
                " / " + str(dstd1))
            # see if we can find a better one?
            # k should really depend on nchan, (like an nsigma), 2-3 should be ok for most.
            k = 2.5
            dmin = dr.min()
            dmax = dr.min() + 2 * k * ddr.std() / 1.414214
            logging.debug("DMIN/DMAX: " + str(dmin) + " / " + \
                str(dmax))
            dm = ma.masked_outside(dr, dmin, dmax)
            dmean = max(0.0,
                        dm.mean())  # ensure that the mean is positive or 0.0
            dstd = dm.std()
            if self.noise is not None:
                cutoff = self.pmin * self.noise
            elif self.nomean:
                cutoff = self.pmin * dstd
            else:
                cutoff = dmean + self.pmin * dstd

            logging.debug("BETTER MEAN/SIGMA: " + str(dmean) + \
                " / " + str(dstd))
        else:
            # classic simple, but fails when robust didn't kill off (enough of) the signal
            # sigma will be too high, cutoff too high and you could have no lines if there
            # is one strong lines
            dmean = dr.mean()
            dstd = dr.std()
            if self.noise is not None:
                cutoff = self.pmin * self.noise
            elif self.nomean:
                cutoff = self.pmin * dstd
            else:
                cutoff = dmean + self.pmin * dstd
            logging.debug("CLASSIC MEAN/SIGMA: " + str(dmean) + \
                " / " + str(dstd))
        logging.debug("SEGMENTS: f=%g pmin=%g maxgap=%d minchan=%d" % \
                   (self.f, self.pmin, self.maxgap, self.minchan))
        #print "\nDATA\n\n",data2,"\n\n"
        segments = self.line_segments(data2, cutoff)
        #print "SEGMENTS",segments
        nlines = len(segments)
        logging.debug("Found %d segments above cutoff %f" % \
            (nlines, cutoff))
        segp = []
        rmax = data2.max() + 0.1  #  + 0.05*(data2.max()-data2.min())
        segp.append([self.freq[0], self.freq[n - 1], cutoff, cutoff])
        segp.append([self.freq[0], self.freq[n - 1], dmean, dmean])
        for (l, s) in zip(range(nlines), segments):
            ch0 = s[0]
            ch1 = s[1]
            sum0 = sum(data2[ch0:ch1 + 1])
            sum1 = sum(self.freq[ch0:ch1 + 1] * data2[ch0:ch1 + 1])
            sum2 = sum(self.freq[ch0:ch1 + 1] * self.freq[ch0:ch1 + 1] *
                       data2[ch0:ch1 + 1])
            lmean = sum1 / sum0
            # this fails for weaker lines, so wrapped it in a abs
            lsigma = math.sqrt(abs(sum2 / sum0 - lmean * lmean))
            lmax = max(data2[ch0:ch1 + 1])
            if self.peak != None:
                lpeak = 1000 * max(self.peak[ch0:ch1 + 1])
            else:
                lpeak = max(self.spec[ch0:ch1 + 1])
            # @todo if we ever allow minchan=1 lsigma would be 0.0.... should we adopt channel width?
            lfwhm = 2.355 * lsigma / lmean * utils.c
            logging.debug(
                "Line in %2d channels %4d - %4d @ %.4f GHz +/- %.4f GHz log(S/N) = %.2f FWHM %5.1f km/s  %.2f" % \
                (ch1 - ch0 + 1, ch0, ch1, lmean, lsigma, lmax, lfwhm, lpeak))
            segp.append([self.freq[ch0], self.freq[ch1], rmax, rmax])
            segp.append([lmean, lmean, rmax - 0.1, rmax + 0.05])
        return Segments.Segments(segments,
                                 nchan=len(self.spec)), cutoff, dstd, dmean
예제 #15
0
파일: PVSlice_AT.py 프로젝트: teuben/admit
    def run(self):
        """Runs the task.

           Parameters
           ----------
           None

           Returns
           -------
           None
        """
        self._summary = {}
        pvslicesummary = []
        sumslicetype = 'slice'
        sliceargs = []
        dt = utils.Dtime("PVSlice")
        # import here, otherwise sphinx cannot parse
        from impv     import impv
        from imsmooth import imsmooth

        pvslice = self.getkey('slice')       # x_s,y_s,x_e,y_e (start and end of line)
        pvslit  = self.getkey('slit')        # x_c,y_c,len,pa  (center, length and PA of line)

        # BDP's used :

        #   b10 = input BDP
        #   b11 = input BDP (moment)
        #   b12 = input BDP (new style cubestats w/ maxpos)
        #   b2 = output BDP

        b10 = self._bdp_in[0]                 # input SpwCube
        fin = b10.getimagefile(bt.CASA)       # input name

        b11 = self._bdp_in[1]                 # 
        b12 = self._bdp_in[2]

        clip  = self.getkey('clip')           # clipping to data for Moment-of-Inertia
        gamma = self.getkey('gamma')          # gamma factor to data for Moment-of-Inertia

        if b11 != None and len(pvslice) == 0 and len(pvslit) == 0:
            # if a map (e.g. cubesum ) given, and no slice/slit, get a best pvslice from that
            (pvslice,clip) = map_to_slit(self.dir(b11.getimagefile(bt.CASA)),clip=clip,gamma=gamma)
        elif b12 != None and len(pvslice) == 0 and len(pvslit) == 0:
            # PPP doesn't seem to work too well yet
            logging.debug("testing new slice computation from a PPP")
            max     = b12.table.getColumnByName("max")
            maxposx = b12.table.getColumnByName("maxposx")
            maxposy = b12.table.getColumnByName("maxposy")
            if maxposx == None:
              raise Exception,"PPP was not enabled in your CubeStats"
            (pvslice,clip) = tab_to_slit([maxposx,maxposy,max],clip=clip,gamma=gamma)
        sliceargs = deepcopy(pvslice)
        if len(sliceargs)==0:
            logging.warning("no slice for plot yet")
        # ugh, this puts single quotes around the numbers
        formattedslice = str(["%.2f" % a for a in sliceargs])
        taskargs = "slice="+formattedslice
        dt.tag("slice")

        pvname = self.mkext(fin,'pv')        # output image name
        b2 = PVSlice_BDP(pvname)
        self.addoutput(b2)

        width   = self.getkey('width')       # @todo also:  "4arcsec"  (can't work since it's a single keyword)

        if len(pvslice) == 4:
            start = pvslice[:2]   # @todo also allow:   ["14h20m20.5s","-30d45m25.4s"]
            end   = pvslice[2:]
            impv(self.dir(fin), self.dir(pvname),"coords",start=start,end=end,width=width,overwrite=True)
        elif len(pvslit) == 4:
            sumslicetype = 'slit'
            sliceargs = deepcopy(pvslit)
            formattedslice = str(["%.2f" % a for a in sliceargs])
            taskargs = "slit="+formattedslice
            # length="40arcsec" same as {"value": 40, "unit": "arcsec"})
            center = pvslit[:2]   # @todo also:   ["14h20m20.5s","-30d45m25.4s"].
            length = pvslit[2]    # @todo also:   "40arcsec", {"value": 40, "unit": "arcsec"})
            if type(pvslit[3]) is float or type(pvslit[3]) is int:
                pa = "%gdeg" % pvslit[3]
            else:
                pa = pvslit[3]
            impv(self.dir(fin), self.dir(pvname),"length",center=center,length=length,pa=pa,width=width,overwrite=True)
        else:
            raise Exception,"no valid input  slit= or slice= or bad Moment_BDP input"
        sliceargs.append(width)
        taskargs = taskargs + " width=%d" % width
        dt.tag("impv")

        smooth = self.getkey('pvsmooth')
        if len(smooth) > 0:
            if len(smooth) == 1:
                smooth.append(smooth[0])
            major = '%dpix' % smooth[0]
            minor = '%dpix' % smooth[1]
            logging.info("imsmooth PV slice: %s %s" % (major,minor))
            imsmooth(self.dir(pvname), outfile=self.dir(pvname)+'.smooth',kernel='boxcar',major=major,minor=minor)
            dt.tag("imsmooth")
            # utils.rename(self.dir(pvname)+'.smooth',self.dir(pvname))
            # @todo  we will keep the smooth PVslice for inspection, no further flow work

        # get some statistics
        data = casautil.getdata_raw(self.dir(pvname))
        rpix = stats.robust(data.flatten())
        r_mean = rpix.mean()
        r_std  = rpix.std()
        r_max = rpix.max()
        logging.info("PV stats: mean/std/max %f %f %f" % (r_mean, r_std, r_max))
        logging.regression("PVSLICE: %f %f %f" % (r_mean, r_std, r_max))

        myplot = APlot(ptype=self._plot_type,pmode=self._plot_mode,abspath=self.dir())

        # hack to get a slice on a mom0map 
        # @todo   if pmode is not png, can viewer handle this?
        figname   = pvname + ".png"
        slicename = self.dir(figname)
        overlay   = "pvoverlay"
        if b11 != None:
            f11 = b11.getimagefile(bt.CASA)
            taskinit.tb.open(self.dir(f11))
            data = taskinit.tb.getcol('map')
            nx = data.shape[0]
            ny = data.shape[1]
            taskinit.tb.close()
            d1 = np.flipud(np.rot90 (data.reshape((nx,ny))))
            if len(pvslice) == 4:
              segm = [[pvslice[0],pvslice[2],pvslice[1],pvslice[3]]]
              pa = np.arctan2(pvslice[2]-pvslice[0],pvslice[1]-pvslice[3])*180.0/np.pi
              title = "PV Slice location : slice PA=%.1f" % pa
            elif len(pvslit) == 4:
              # can only do this now if using pixel coordinates
              xcen = pvslit[0]
              ycen = ny-pvslit[1]-1
              slen = pvslit[2]
              pard = pvslit[3]*np.pi/180.0
              cosp = np.cos(pard)
              sinp = np.sin(pard)
              halflen = 0.5*slen
              segm = [[xcen-halflen*sinp,xcen+halflen*sinp,ycen-halflen*cosp,ycen+halflen*cosp]]
              pa   = pvslit[3]
              title = "PV Slice location : slit PA=%g" % pa
            else:
              # bogus, some error in pvslice
              logging.warning("bogus segm since pvslice=%s" % str(pvslice))
              segm = [[10,20,10,20]]
              pa   = -999.999
              title = "PV Slice location - bad PA"
            logging.info("MAP1 segm %s %s" % (str(segm),str(pvslice)))
            if d1.max() < clip:
              logging.warning("datamax=%g,  clip=%g" % (d1.max(), clip))
              title = title + ' (no signal over %g?)' % clip
              myplot.map1(d1,title,overlay,segments=segm,thumbnail=True)
            else:
              myplot.map1(d1,title,overlay,segments=segm,range=[clip],thumbnail=True)
            dt.tag("plot")
            overlayname = myplot.getFigure(figno=myplot.figno,relative=True)
            overlaythumbname = myplot.getThumbnail(figno=myplot.figno,relative=True)
            Qover = True
        else:
            Qover = False

        implot = ImPlot(pmode=self._plot_mode,ptype=self._plot_type,abspath=self.dir())
        implot.plotter(rasterfile=pvname, figname=pvname, colorwedge=True)
        thumbname = implot.getThumbnail(figno=implot.figno,relative=True)
        figname   = implot.getFigure(figno=implot.figno,relative=True)
        if False:
            # debug:
            #
            # @todo    tmp1 is ok, tmp2 is not displaying the whole thing
            # old style:   viewer() seems to plot full image, but imview() wants square pixels?
            casa.viewer(infile=self.dir(pvname), outfile=self.dir('tmp1.pv.png'), gui=False, outformat="png")
            casa.imview(raster={'file':self.dir(pvname),  'colorwedge' : True, 'scaling':-1},
                    axes={'y':'Declination'},
                    out=self.dir('tmp2.pv.png'))
            #
            # -> this one works, axes= should be correct
            # imview(raster={'file':'x.pv',  'colorwedge' : True, 'scaling':-1},axes={'y':'Frequency'})
            #
            # @TODO big fixme, we're going to reuse 'tmp1.pv.png' because implot give a broken view
            figname = 'tmp1.pv.png'
                    
        # @todo   technically we don't know what map it was overlay'd on.... CubeSum/Moment0
        overlaycaption = "Location of position-velocity slice overlaid on a CubeSum map"
        pvcaption = "Position-velocity diagram through emission centroid"
        pvimage = Image(images={bt.CASA : pvname, bt.PNG : figname},thumbnail=thumbname,thumbnailtype=bt.PNG, description=pvcaption)
        b2.setkey("image",pvimage)
        b2.setkey("mean",float(r_mean))
        b2.setkey("sigma",float(r_std))
        if Qover:
          thispvsummary = [sumslicetype,sliceargs,figname,thumbname,pvcaption,overlayname,overlaythumbname,overlaycaption,pvname,fin]
        else:
          thispvsummary = [sumslicetype,sliceargs,figname,thumbname,pvcaption,pvname,fin]
        
        # Yes, this is a nested list.  Against the day when PVSLICE can
        # compute multiple slices per map.
        pvslicesummary.append(thispvsummary)
        self._summary["pvslices"] = SummaryEntry(pvslicesummary,"PVSlice_AT",self.id(True),taskargs)

        dt.tag("done")
        dt.end()
예제 #16
0
    def find(self):
        """ Method that does the segment finding

            Parameters
            ----------
            None

            Returns
            -------
            Tuple containing a list of the segments, the cutoff used, the
            noise level, and a mean baseline.

        """
        if self.abs:
            self.spec = abs(self.spec)
        temp = np.zeros(len(self.spec))
        #self.see = ma.masked_array(temp, mask=self.spec.mask)
        # parameters (some now from the function argument)
        logging.debug("MIN/MAX " + str(self.spec.min()) + " / " +\
            str(self.spec.max()))
        n = len(self.spec)      # data and freq assumed to be same size
        if self.hanning:
            h = np.hanning(5) / 2         # normalize the convolution array
            h = np.array([0.25, 0.5, 0.25])
            data2 = np.convolve(self.spec, h, 'same')
        else:
            data2 = self.spec
        if len(data2) != len(self.freq):
            raise Exception("ulines: data2 and freq not same array")

        # do the work
        dr = stats.robust(data2, self.f)
        noise = dr.std()
        logging.debug("ROBUST: (mean/median/noise) " + \
            str(dr.mean()) + " / " + str(ma.median(dr)) + " / " + str(noise))
        #print "\n\nD2",data2,"\n"
        data3 = ma.masked_invalid(data2)
        #print "\n\nD3\n",data3,"\n"
        ddiff = data3[1:n] - data3[0:n-1]
        logging.debug("DIFF: (mean/stdev) " + str(ddiff.mean()) +\
            " / " + str(ddiff.std()))
        #print "\n\n",ddiff,"\n",self.f,"\n"
        ddr = stats.robust(ddiff, self.f)
        logging.debug("RDIFF: (mean/median/stdev) " + \
            str(ddr.mean()) + " / " + str(ma.median(ddr)) + " / " + \
            str(ddr.std()))
        #plt.show()
        if self.bottom:
            # first remind the classic
            dmean1 = dr.mean()
            dstd1 = dr.std()
            logging.debug("CLASSIC MEAN/SIGMA: " + str(dmean1) + \
                " / " + str(dstd1))
            # see if we can find a better one?
            # k should really depend on nchan, (like an nsigma), 2-3 should be ok for most.
            k = 2.5
            dmin = dr.min()
            dmax = dr.min() + 2 * k * ddr.std() / 1.414214
            logging.debug("DMIN/DMAX: " + str(dmin) + " / " + \
                str(dmax))
            dm = ma.masked_outside(dr, dmin, dmax)
            dmean = max(0.0, dm.mean()) # ensure that the mean is positive or 0.0
            dstd = dm.std()
            if self.noise is not None:
                cutoff = self.pmin * self.noise
            elif self.nomean:
                cutoff = self.pmin * dstd
            else:
                cutoff = dmean + self.pmin * dstd

            logging.debug("BETTER MEAN/SIGMA: " + str(dmean) + \
                " / " + str(dstd))
        else:
            # classic simple, but fails when robust didn't kill off (enough of) the signal
            # sigma will be too high, cutoff too high and you could have no lines if there
            # is one strong lines
            dmean = dr.mean()
            dstd = dr.std()
            if self.noise is not None:
                cutoff = self.pmin * self.noise
            elif self.nomean:
                cutoff = self.pmin * dstd
            else:
                cutoff = dmean + self.pmin * dstd
            logging.debug("CLASSIC MEAN/SIGMA: " + str(dmean) + \
                " / " + str(dstd))
        logging.debug("SEGMENTS: f=%g pmin=%g maxgap=%d minchan=%d" % \
                   (self.f, self.pmin, self.maxgap, self.minchan))
        #print "\nDATA\n\n",data2,"\n\n"
        segments = self.line_segments(data2, cutoff)
        #print "SEGMENTS",segments
        nlines = len(segments)
        logging.debug("Found %d segments above cutoff %f" % \
            (nlines, cutoff))
        segp = []
        rmax = data2.max() + 0.1 #  + 0.05*(data2.max()-data2.min())
        segp.append([self.freq[0], self.freq[n - 1], cutoff, cutoff])
        segp.append([self.freq[0], self.freq[n - 1], dmean, dmean])
        for (l, s) in zip(range(nlines), segments):
            ch0 = s[0]
            ch1 = s[1]
            sum0 = sum(data2[ch0:ch1+1])
            sum1 = sum(self.freq[ch0:ch1+1] * data2[ch0:ch1+1])
            sum2 = sum(self.freq[ch0:ch1+1] * self.freq[ch0:ch1+1] * data2[ch0:ch1+1])
            lmean = sum1 / sum0
            # this fails for weaker lines, so wrapped it in a abs
            lsigma = math.sqrt(abs(sum2 / sum0 - lmean * lmean))
            lmax = max(data2[ch0:ch1+1])
            if self.peak != None:
                lpeak = 1000*max(self.peak[ch0:ch1+1])
            else:
                lpeak = max(self.spec[ch0:ch1+1])
            # @todo if we ever allow minchan=1 lsigma would be 0.0.... should we adopt channel width?
            lfwhm = 2.355 * lsigma / lmean * utils.c
            logging.debug(
                "Line in %2d channels %4d - %4d @ %.4f GHz +/- %.4f GHz log(S/N) = %.2f FWHM %5.1f km/s  %.2f" % \
                (ch1 - ch0 + 1, ch0, ch1, lmean, lsigma, lmax, lfwhm, lpeak))
            segp.append([self.freq[ch0], self.freq[ch1], rmax, rmax])
            segp.append([lmean, lmean, rmax - 0.1, rmax + 0.05])
        return Segments.Segments(segments, nchan=len(self.spec)), cutoff, dstd, dmean
예제 #17
0
파일: PVSlice_AT.py 프로젝트: teuben/admit
def map_to_slit(fname, clip=0.0, gamma=1.0):
    """take all values from a map over clip, compute best slit for PV Slice
    """
    taskinit.ia.open(fname)
    imshape = taskinit.ia.shape()
    pix = taskinit.ia.getchunk().squeeze()     # this should now be a numpy pix[ix][iy] map
    pixmax = pix.max()
    pixrms = pix.std()
    if False:
        pix1 = pix.flatten()
        rpix = stats.robust(pix1)
        logging.debug("stats: mean: %g %g" % (pix1.mean(), rpix.mean()))
        logging.debug("stats: rms: %g %g" % (pix1.std(), rpix.std()))
        logging.debug("stats: max: %g %g" % (pix1.max(), rpix.max()))
        logging.debug('shape: %s %s %s' % (str(pix.shape),str(pix1.shape),str(imshape)))
    taskinit.ia.close()
    nx = pix.shape[0]
    ny = pix.shape[1]
    x=np.arange(pix.shape[0]).reshape( (nx,1) )
    y=np.arange(pix.shape[1]).reshape( (1,ny) )
    if clip > 0.0:
        nmax = nx*ny
        clip = clip * pixrms
        logging.debug("Using initial clip=%g for rms=%g" % (clip,pixrms))
        m=ma.masked_less(pix,clip)
        while m.count() == 0:
          clip = 0.5 * clip
          logging.debug("no masking...trying lower clip=%g" % clip)
          m=ma.masked_less(pix,clip)
        else:
          logging.debug("Clip=%g now found %d/%d points" % (clip,m.count(),nmax))
        
    else:
        #@ todo   sigma-clipping with iterations?  see also astropy.stats.sigma_clip()
        rpix = stats.robust(pix.flatten())
        r_mean = rpix.mean()
        r_std  = rpix.std()
        logging.info("ROBUST MAP mean/std: %f %f" % (r_mean,r_std))
        m=ma.masked_less(pix,-clip*r_std)
    logging.debug("Found > clip=%g : %g" % (clip,m.count()))
    if m.count() == 0:
        logging.warning("Returning a dummy slit, no points above clip %g" % clip)
        edge = 3.0
        #slit = [edge,0.5*ny,nx-1.0-edge,0.5*ny]          # @todo    file a bug, this failed
        #  RuntimeError: (/var/rpmbuild/BUILD/casa-test/casa-test-4.5.7/code/imageanalysis/ImageAnalysis/PVGenerator.cc : 334) Failed AlwaysAssert abs( (endPixRot[0] - startPixRot[0]) - sqrt(xdiff*xdiff + ydiff*ydiff) ) < 1e-6
        slit = [edge,0.5*ny-0.1,nx-1.0-edge,0.5*ny+0.1]
    else:
        slit = convert_to_slit(m,x,y,nx,ny,gamma)
    return (slit,clip)
예제 #18
0
    def run(self):
        """ The run method creates the BDP

            Parameters
            ----------
            None

            Returns
            -------
            None
        """
        dt = utils.Dtime("SFind2D")  # tagging time
        self._summary = {}
        # get key words that user input
        nsigma = self.getkey("numsigma")
        sigma = self.getkey("sigma")
        region = self.getkey("region")
        robust = self.getkey("robust")
        snmax = self.getkey("snmax")
        nmax = self.getkey("nmax")
        ds9 = True  # writes a "ds9.reg" file
        mpl = True  # aplot.map1() plot
        dynlog = 20.0  # above this value of dyn range finder chart is log I-scaled
        bpatch = True  # patch units to Jy/beam for ia.findsources()

        # get the input casa image from bdp[0]
        bdpin = self._bdp_in[0]
        infile = bdpin.getimagefile(bt.CASA)
        if mpl:
            data = np.flipud(np.rot90(casautil.getdata(self.dir(infile)).data))

        # check if there is a 2nd image (which will be a PB)
        for i in range(len(self._bdp_in)):
            print 'BDP', i, type(self._bdp_in[i])

        if self._bdp_in[2] != None:
            bdpin_pb = self._bdp_in[1]
            bdpin_cst = self._bdp_in[2]
            print "Need to process PB"
        else:
            bdpin_pb = None
            bdpin_cst = self._bdp_in[1]
            print "No PB given"

        # get the output bdp basename
        slbase = self.mkext(infile, 'sl')

        # make sure it's a 2D map
        if not casautil.mapdim(self.dir(infile), 2):
            raise Exception, "Input map dimension not 2: %s" % infile

        # arguments for imstat call if required
        args = {"imagename": self.dir(infile)}
        if region != "":
            args["region"] = region
        dt.tag("start")

        # The following code sets the sigma level for searching for sources using
        # the sigma and snmax keyword as appropriate
        # if no CubeStats BDP was given and no sigma was specified:
        # find a noise level via casa.imstat()
        # if a CubeStat_BDP is given get it from there.
        if bdpin_cst == None:
            # get statistics from input image with imstat because no CubeStat_BDP
            stat = casa.imstat(**args)
            dmin = float(
                stat["min"]
                [0])  # these would be wrong if robust were used already
            dmax = float(stat["max"][0])
            args.update(casautil.parse_robust(
                robust))  # only now add robust keywords for the sigma
            stat = casa.imstat(**args)
            if sigma <= 0.0:
                sigma = float(stat["sigma"][0])
            dt.tag("imstat")
        else:
            # get statistics from CubeStat_BDP
            sigma = bdpin_cst.get("sigma")
            dmin = bdpin_cst.get("minval")
            dmax = bdpin_cst.get("maxval")

        self.setkey("sigma", sigma)
        # calculate cutoff based either on RMS or dynamic range limitation
        drange = dmax / (nsigma * sigma)
        if snmax < 0.0:
            snmax = drange
        if drange > snmax:
            cutoff = 1.0 / snmax
        else:
            cutoff = 1.0 / drange
        logging.info("sigma, dmin, dmax, snmax, cutoff %g %g %g %g %g" %
                     (sigma, dmin, dmax, snmax, cutoff))
        # define arguments for call to findsources
        args2 = {"cutoff": cutoff}
        args2["nmax"] = nmax
        if region != "":
            args2["region"] = region
        #args2["mask"] = ""
        args2["point"] = False
        args2["width"] = 5
        args2["negfind"] = False
        # set-up for SourceList_BDP
        slbdp = SourceList_BDP(slbase)

        # connect to casa image and call casa ia.findsources tool
        ia = taskinit.iatool()
        ia.open(self.dir(infile))

        # findsources() cannot deal with  'Jy/beam.km/s' ???
        # so for the duration of findsources() we patch it
        bunit = ia.brightnessunit()
        if bpatch and bunit != 'Jy/beam':
            logging.warning(
                "Temporarely patching your %s units to Jy/beam for ia.findsources()"
                % bunit)
            ia.setbrightnessunit('Jy/beam')
        else:
            bpatch = False
        atab = ia.findsources(**args2)
        if bpatch:
            ia.setbrightnessunit(bunit)

        taskargs = "nsigma=%4.1f sigma=%g region=%s robust=%s snmax=%5.1f nmax=%d" % (
            nsigma, sigma, str(region), str(robust), snmax, nmax)
        dt.tag("findsources")
        nsources = atab["nelements"]
        xtab = []
        ytab = []
        logscale = False
        sumflux = 0.0
        if nsources > 0:
            # @TODO: Why are Xpix, YPix not stored in the table?
            #        -> PJT: I left them out since they are connected to an image which may not be available here
            #                but we should store the frequency of the observation here for later bandmerging
            logging.debug("%s" % str(atab['component0']['shape']))
            logging.info(
                "Right Ascen.  Declination   X(pix)   Y(pix)      Peak       Flux    Major   Minor    PA    SNR"
            )
            funits = atab['component0']['flux']['unit']
            if atab['component0']['shape'].has_key('majoraxis'):
                sunits = atab['component0']['shape']['majoraxis']['unit']
                aunits = atab['component0']['shape']['positionangle']['unit']
            else:
                sunits = "n/a"
                aunits = "n/a"
            punits = ia.summary()['unit']
            logging.info(
                "                                               %s       %s    %s   %s   %s"
                % (punits, funits, sunits, sunits, aunits))
            #
            # @todo future improvement is to look at image coordinates and control output appropriately
            #
            if ds9:
                # @todo variable name
                regname = self.mkext(infile, 'ds9.reg')
                fp9 = open(self.dir(regname), "w!")
            sn0 = -1.0
            for i in range(nsources):
                c = "component%d" % i
                name = "%d" % (i + 1)
                r = atab[c]['shape']['direction']['m0']['value']
                d = atab[c]['shape']['direction']['m1']['value']
                pixel = ia.topixel([r, d])
                xpos = pixel['numeric'][0]
                ypos = pixel['numeric'][1]
                rd = ia.toworld([xpos, ypos], 's')
                ra = rd['string'][0][:12]
                dec = rd['string'][1][:12]
                flux = atab[c]['flux']['value'][0]
                sumflux = sumflux + flux
                if atab[c]['shape'].has_key('majoraxis'):
                    smajor = atab[c]['shape']['majoraxis']['value']
                    sminor = atab[c]['shape']['minoraxis']['value']
                    sangle = atab[c]['shape']['positionangle']['value']
                else:
                    smajor = 0.0
                    sminor = 0.0
                    sangle = 0.0
                peakstr = ia.pixelvalue([xpos, ypos, 0, 0])
                if len(peakstr) == 0:
                    logging.warning("Problem with source %d @ %d,%d" %
                                    (i, xpos, ypos))
                    continue
                peakf = peakstr['value']['value']
                snr = peakf / sigma
                if snr > dynlog:
                    logscale = True
                if snr > sn0:
                    sn0 = snr
                logging.info(
                    "%s %s %8.2f %8.2f %10.3g %10.3g %7.3f %7.3f %6.1f %6.1f" %
                    (ra, dec, xpos, ypos, peakf, flux, smajor, sminor, sangle,
                     snr))

                xtab.append(xpos)
                ytab.append(ypos)
                slbdp.addRow(
                    [name, ra, dec, flux, peakf, smajor, sminor, sangle])
                if ds9:
                    ras = ra
                    des = dec.replace('.', ':', 2)
                    msg = 'ellipse(%s,%s,%g",%g",%g) # text={%s}' % (
                        ras, des, smajor, sminor, sangle + 90.0, i + 1)
                    fp9.write("%s\n" % msg)
            if ds9:
                fp9.close()
                logging.info("Wrote ds9.reg")
            dt.tag("table")
        logging.regression("CONTFLUX: %d %g" % (nsources, sumflux))

        summary = ia.summary()
        beammaj = summary['restoringbeam']['major']['value']
        beammin = summary['restoringbeam']['minor']['value']
        beamunit = summary['restoringbeam']['minor']['unit']
        beamang = summary['restoringbeam']['positionangle']['value']
        angunit = summary['restoringbeam']['positionangle']['unit']
        # @todo add to table comments?
        logging.info(" Fitted Gaussian size; NOT deconvolved source size.")
        logging.info(
            " Restoring Beam: Major axis: %10.3g %s , Minor axis: %10.3g %s , PA: %5.1f %s"
            % (beammaj, beamunit, beammin, beamunit, beamang, angunit))
        # form into a xml table

        # output is a table_bdp
        self.addoutput(slbdp)

        # instantiate a plotter for all plots made herein
        myplot = APlot(ptype=self._plot_type,
                       pmode=self._plot_mode,
                       abspath=self.dir())

        # make output png with circles marking sources found
        if mpl:
            circles = []
            nx = data.shape[1]  # data[] array was already flipud(rot90)'d
            ny = data.shape[0]  #
            for (x, y) in zip(xtab, ytab):
                circles.append([x, y, 1])
            # @todo variable name
            if logscale:
                logging.warning("LogScaling applied")
                data = data / sigma
                data = np.where(data < 0, -np.log10(1 - data),
                                +np.log10(1 + data))
            if nsources == 0:
                title = "SFind2D: 0 sources above S/N=%.1f" % (nsigma)
            elif nsources == 1:
                title = "SFind2D: 1 source (%.1f < S/N < %.1f)" % (nsigma, sn0)
            else:
                title = "SFind2D: %d sources (%.1f < S/N < %.1f)" % (
                    nsources, nsigma, sn0)
            myplot.map1(data,
                        title,
                        slbase,
                        thumbnail=True,
                        circles=circles,
                        zoom=self.getkey("zoom"))

        #---------------------------------------------------------
        # Get the figure and thumbmail names and create a caption
        #---------------------------------------------------------
        imname = myplot.getFigure(figno=myplot.figno, relative=True)
        thumbnailname = myplot.getThumbnail(figno=myplot.figno, relative=True)
        caption = "Image of input map with sources found by SFind2D overlayed in green."
        slbdp.table.description = "Table of source locations and sizes (not deconvolved)"

        #---------------------------------------------------------
        # Add finder image to the BDP
        #---------------------------------------------------------
        image = Image(images={bt.PNG: imname},
                      thumbnail=thumbnailname,
                      thumbnailtype=bt.PNG,
                      description=caption)
        slbdp.image.addimage(image, "finderimage")

        #-------------------------------------------------------------
        # Create the summary entry for the table and image
        #-------------------------------------------------------------
        self._summary["sources"] = SummaryEntry(
            [slbdp.table.serialize(),
             slbdp.image.serialize()], "SFind2D_AT", self.id(True), taskargs)

        dt.tag("done")
        dt.end()
예제 #19
0
파일: PVSlice_AT.py 프로젝트: teuben/admit
def convert_to_slit(m,x,y,nx,ny,gamma=1.0,expand=1.0):
    """compute best slit for PV Slice from set of points or masked array
    using moments of inertia
    m=mass (intensity)  x,y = positions
    """
    # sanity
    if len(m) == 0: return []
    if type(m) == ma.core.MaskedArray:
      if m.count() == 0:  return []
    # apply gamma factor
    logging.debug("Gamma = %f" % gamma)
    mw = ma.power(m,gamma)
    # first find a rough center
    smx = ma.sum(mw*x)
    smy = ma.sum(mw*y)
    sm  = ma.sum(mw)
    xm = smx/sm
    ym = smy/sm
    logging.debug('MOI::center: %f %f' % (xm,ym))
    (xpeak,ypeak) = np.unravel_index(mw.argmax(),mw.shape)
    logging.debug('PEAK: %f %f' % (xpeak,ypeak))
    if True:
      # center on peak
      # @todo but if (xm,ym) and (xpeak,ypeak) differ too much, e.g.
      #       outside of the MOI body, something else is wrong
      xm = xpeak
      ym = ypeak
    # take 2nd moments w.r.t. this center
    x = x-xm
    y = y-ym
    mxx=m*x*x
    mxy=m*x*y
    myy=m*y*y
    #
    smxx=ma.sum(mxx)/sm
    smxy=ma.sum(mxy)/sm
    smyy=ma.sum(myy)/sm
    #  MOI2
    moi = np.array([smxx,smxy,smxy,smyy]).reshape(2,2)
    w,v = la.eig(moi)
    a   = math.sqrt(w[0])
    b   = math.sqrt(w[1])
    phi = -math.atan2(v[0][1],v[0][0])
    if a < b:  
        phi = phi + 0.5*np.pi
    logging.debug('MOI::a,b,phi(deg): %g %g %g' % (a,b,phi*180.0/np.pi))
    #  ds9.reg format (image coords)
    sinp = np.sin(phi)
    cosp = np.cos(phi)
    # compute the line take both a and b into account,
    # since we don't even know or care which is the bigger one
    r  = np.sqrt(a*a+b*b)
    x0 = xm - expand*r*cosp 
    y0 = ym - expand*r*sinp 
    x1 = xm + expand*r*cosp 
    y1 = ym + expand*r*sinp 
    # add 1 for ds9, which used 1 based pixels
    logging.debug("ds9 short line(%g,%g,%g,%g)" % (x0+1,y0+1,x1+1,y1+1))
    if nx > 0:
      s = expand_line(x0,y0,x1,y1,nx,ny)
      logging.debug("ds9 full line(%g,%g,%g,%g)" % (s[0],s[1],s[2],s[3]))
      return [float(s[0]),float(s[1]),float(s[2]),float(s[3])]
    else:
      return [float(x0),float(y0),float(x1),float(y1)]
예제 #20
0
파일: Moment_AT.py 프로젝트: teuben/admit
    def run(self):
        """ The run method, calculates the moments and creates the BDP(s)

            Parameters
            ----------
            None

            Returns
            -------
            None
        """
        self._summary = {}
        momentsummary = []
        dt = utils.Dtime("Moment")

        # variable to track if we are using a single cutoff for all moment maps
        allsame = False
        moments = self.getkey("moments")
        numsigma = self.getkey("numsigma")
        mom0clip = self.getkey("mom0clip")
        # determine if there is only 1 cutoff or if there is a cutoff for each moment
        if len(moments) != len(numsigma):
            if len(numsigma) != 1:
                raise Exception("Length of numsigma and moment lists do not match. They must be the same length or the length of the cutoff list must be 1.")
            allsame = True
        # default moment file extensions, this is information copied from casa.immoments()
        momentFileExtensions = {-1: ".average",
                                 0: ".integrated",
                                 1: ".weighted_coord",
                                 2: ".weighted_dispersion_coord",
                                 3: ".median",
                                 4: "",
                                 5: ".standard_deviation",
                                 6: ".rms",
                                 7: ".abs_mean_dev",
                                 8: ".maximum",
                                 9: ".maximum_coord",
                                10: ".minimum",
                                11: ".minimum_coord",
                                }

        logging.debug("MOMENT: %s %s %s" %  (str(moments), str(numsigma), str(allsame)))

        # get the input casa image from bdp[0]
        # also get the channels the line actually covers (if any)
        bdpin = self._bdp_in[0]
        infile = bdpin.getimagefile(bt.CASA)
        chans = self.getkey("chans")
        # the basename of the moments, we will append _0, _1, etc.
        basename = self.mkext(infile, "mom")
        fluxname = self.mkext(infile, "flux")
        # beamarea = nppb(self.dir(infile))
        beamarea = 1.0  # until we have it from the MOM0 map

        sigma0 = self.getkey("sigma")
        sigma  = sigma0

        dt.tag("open")

        # if no CubseStats BDP was given and no sigma was specified, find a 
        # noise level via casa.imstat()
        if self._bdp_in[1] is None and sigma <= 0.0:
            raise Exception("A sigma or a CubeStats_BDP must be input to calculate the cutoff")
        elif self._bdp_in[1] is not None:
            sigma = self._bdp_in[1].get("sigma")

        # immoments is a bit peculiar. If you give one moment, it will use 
        # exactly the outfile you picked for multiple moments, it will pick
        # extensions such as .integrated [0], .weighted_coord [1] etc.
        # we loop over the moments and will use the numeric extension instead. 
        # Might be laborious loop for big input cubes
        #
        # arguments for immoments
        args = {"imagename" : self.dir(infile),
                "moments"   : moments,
                "outfile"   : self.dir(basename)}

        # set the channels if given
        if chans != "":
            args["chans"] = chans
        # error check the mom0clip input
        if mom0clip > 0.0 and not 0 in moments:
            logging.warning("mom0clip given, but no moment0 map was requested. One will be generated anyway.")
            # add moment0 to the list of computed moments, but it has to be first
            moments.insert(0,0)
            if not allsame:
                numsigma.insert(0, 2.0*sigma)

        if allsame:
            # this is only executed now if len(moments) > 1 and len(cutoff)==1
            args["excludepix"] = [-numsigma[0] * sigma, numsigma[0] * sigma]
            casa.immoments(**args)
            dt.tag("immoments-all")
        else:
            # this is execute if len(moments)==len(cutoff) , even when len=1
            for i in range(len(moments)):
                args["excludepix"] = [-numsigma[i] * sigma, numsigma[i] * sigma]
                args["moments"] = moments[i]
                args["outfile"] = self.dir(basename + momentFileExtensions[moments[i]])
                casa.immoments(**args)
                dt.tag("immoments-%d" % moments[i])

        taskargs = "moments=%s numsigma=%s" % (str(moments), str(numsigma)) 
        if sigma0 > 0:
            taskargs = taskargs + " sigma=%.2f" % sigma0
        if mom0clip > 0:
            taskargs = taskargs + " mom0clip=%g" % mom0clip
        if chans == "": 
            taskargs = taskargs + " chans=all"
        else:
            taskargs = taskargs + " chans=%s" % str(chans)
        taskargs += '&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; <span style="background-color:white">&nbsp;' + basename.split('/')[0] + '&nbsp;</span>'

        # generate the mask to be applied to all but moment 0
        if mom0clip > 0.0:
            # get the statistics from mom0 map
            # this is usually a very biased map, so unclear if mom0sigma is all that reliable
            args = {"imagename": self.dir(infile)}
            stat = casa.imstat(imagename=self.dir(basename + momentFileExtensions[0]))
            mom0sigma = float(stat["sigma"][0])
            # generate a temporary masked file, mask will be copied to other moments
            args = {"imagename" : self.dir(basename + momentFileExtensions[0]),
                    "expr"      : 'IM0[IM0>%f]' % (mom0clip * mom0sigma),
                    "outfile"   : self.dir("mom0.masked")
                    }
            casa.immath(**args)
            # get the default mask name
            taskinit.ia.open(self.dir("mom0.masked"))
            defmask = taskinit.ia.maskhandler('default')
            taskinit.ia.close()
            dt.tag("mom0clip")

        # loop over moments to rename them to _0, _1, _2 etc.
        # apply a mask as well for proper histogram creation
        map = {}
        myplot = APlot(pmode=self._plot_mode,ptype=self._plot_type,abspath=self.dir())
        implot = ImPlot(pmode=self._plot_mode,ptype=self._plot_type,abspath=self.dir())

        for mom in moments:
            figname = imagename = "%s_%i" % (basename, mom)
            tempname = basename + momentFileExtensions[mom]
            # rename and remove the old one if there is one
            utils.rename(self.dir(tempname), self.dir(imagename))
            # copy the moment0 mask if requested; this depends on that mom0 was done before
            if mom0clip > 0.0 and mom != 0:
                #print "PJT: output=%s:%s" % (self.dir(imagename), defmask[0])
                #print "PJT: inpmask=%s:%s" % (self.dir("mom0.masked"),defmask[0])
                makemask(mode="copy", inpimage=self.dir("mom0.masked"),
                         output="%s:%s" % (self.dir(imagename), defmask[0]),
                         overwrite=True, inpmask="%s:%s" % (self.dir("mom0.masked"),
                                                            defmask[0]))
                taskinit.ia.open(self.dir(imagename))
                taskinit.ia.maskhandler('set', defmask)
                taskinit.ia.close()
                dt.tag("makemask")
            if mom == 0:
                beamarea = nppb(self.dir(imagename))
            implot.plotter(rasterfile=imagename,figname=figname,colorwedge=True)
            imagepng  = implot.getFigure(figno=implot.figno,relative=True)
            thumbname = implot.getThumbnail(figno=implot.figno,relative=True)
            images = {bt.CASA : imagename, bt.PNG  : imagepng}
            thumbtype=bt.PNG
            dt.tag("implot")

            # get the data for a histogram (ia access is about 1000-2000 faster than imval())
            map[mom] = casautil.getdata(self.dir(imagename))
            data = map[mom].compressed()
            dt.tag("getdata")

            # make the histogram plot

            # get the label for the x axis
            bunit = casa.imhead(imagename=self.dir(imagename), mode="get", hdkey="bunit")
            # object for the caption
            objectname = casa.imhead(imagename=self.dir(imagename), mode="get", hdkey="object")

            # Make the histogram plot
            # Since we give abspath in the constructor, figname should be relative
            auxname = imagename + '_histo'
            auxtype = bt.PNG
            myplot.histogram(columns = data,
                             figname = auxname,
                             xlab    = bunit,
                             ylab    = "Count",
                             title   = "Histogram of Moment %d: %s" % (mom, imagename), thumbnail=True)

            casaimage = Image(images    = images,
                                    auxiliary = auxname,
                                    auxtype   = auxtype,
                                    thumbnail = thumbname,
                                    thumbnailtype = thumbtype)
            auxname = myplot.getFigure(figno=myplot.figno,relative=True)
            auxthumb = myplot.getThumbnail(figno=myplot.figno,relative=True)

            if hasattr(self._bdp_in[0], "line"):   # SpwCube doesn't have Line
                line = deepcopy(getattr(self._bdp_in[0], "line"))
                if not isinstance(line, Line):
                    line = Line(name="Unidentified")
            else:
                # fake a Line if there wasn't one
                line = Line(name="Unidentified")
            # add the BDP to the output array
            self.addoutput(Moment_BDP(xmlFile=imagename, moment=mom,
                           image=deepcopy(casaimage), line=line))
            dt.tag("ren+mask_%d" % mom)

            imcaption = "%s Moment %d map of Source %s" % (line.name, mom, objectname)
            auxcaption = "Histogram of %s Moment %d of Source %s" % (line.name, mom, objectname)
            thismomentsummary = [line.name, mom, imagepng, thumbname, imcaption,
                                 auxname, auxthumb, auxcaption, infile]
            momentsummary.append(thismomentsummary)

        if map.has_key(0) and map.has_key(1) and map.has_key(2):
            logging.debug("MAPs present: %s" % (map.keys()))

            # m0 needs a new mask, inherited from the more restricted m1 (and m2)
            m0 = ma.masked_where(map[1].mask,map[0])
            m1 = map[1]
            m2 = map[2]
            m01 = m0*m1
            m02 = m0*m1*m1
            m22 = m0*m2*m2
            sum0 = m0.sum()
            vmean = m01.sum()/sum0
            # lacking the full 3D cube, get two estimates and take the max
            sig1  = math.sqrt(m02.sum()/sum0 - vmean*vmean)
            sig2  = m2.max()
            #vsig = max(sig1,sig2)
            vsig = sig1
            
            # consider clipping in the masked array (mom0clip)
            # @todo   i can't use info from line, so just borrow basename for now for grepping
            #         this also isn't really the flux, the points per beam is still in there
            loc = basename.rfind('/')
            sum1 = ma.masked_less(map[0],0.0).sum()   # mom0clip
            # print out:   LINE,FLUX1,FLUX0,BEAMAREA,VMEAN,VSIGMA for regression
            # the linechans parameter in bdpin is not useful to print out here, it's local to the LineCube
            s_vlsr = admit.Project.summaryData.get('vlsr')[0].getValue()[0]
            s_rest = admit.Project.summaryData.get('restfreq')[0].getValue()[0]/1e9
            s_line = line.frequency
            if loc>0:
                if basename[:loc][0:2] == 'U_':
                    # for U_ lines we'll reference the VLSR w.r.t. RESTFREQ in that band
                    if abs(vmean) > vsig:
                        vwarn = '*'
                    else:
                        vwarn = ''
                    vlsr = vmean + (1.0-s_line/s_rest)*utils.c
                    msg = "MOM0FLUX: %s %g %g %g %g %g %g" % (basename[:loc],map[0].sum(),sum0,beamarea,vmean,vlsr,vsig)
                else:
                    # for identified lines we'll assume the ID was correct and not bother with RESTFREQ
                    msg = "MOM0FLUX: %s %g %g %g %g %g %g" % (basename[:loc],map[0].sum(),sum0,beamarea,vmean,vmean,vsig)
            else:
                msg = "MOM0FLUX: %s %g %g %g %g %g %g" % ("SPW_FULL"    ,map[0].sum(),sum0,beamarea,vmean,vmean,vsig)
            logging.regression(msg)
            dt.tag("mom0flux")

            # create a histogram of flux per channel

            # grab the X coordinates for the histogram, we want them in km/s
            # restfreq should also be in summary
            restfreq = casa.imhead(self.dir(infile),mode="get",hdkey="restfreq")['value']/1e9    # in GHz
            # print "PJT  %.10f %.10f" % (restfreq,s_rest)
            imval0 = casa.imval(self.dir(infile))
            freqs = imval0['coords'].transpose()[2]/1e9
            x = (1-freqs/restfreq)*utils.c
            # 
            h = casa.imstat(self.dir(infile), axes=[0,1])
            if h.has_key('flux'):
                flux0 = h['flux']
            else:
                flux0 = h['sum']/beamarea
            flux0sum = flux0.sum() * abs(x[1]-x[0])
            # @todo   make a flux1 with fluxes derived from a good mask
            flux1 = flux0 
            # construct histogram
            title = 'Flux Spectrum (%g)' % flux0sum
            xlab = 'VLSR (km/s)'
            ylab = 'Flux (Jy)'
            myplot.plotter(x,[flux0,flux1],title=title,figname=fluxname,xlab=xlab,ylab=ylab,histo=True)
            dt.tag("flux-spectrum")
            
        self._summary["moments"] = SummaryEntry(momentsummary, "Moment_AT", 
                                                self.id(True), taskargs)
        # get rid of the temporary mask
        if mom0clip > 0.0: 
            utils.rmdir(self.dir("mom0.masked"))

        dt.tag("done")
        dt.end()