예제 #1
0
    def run(self):
        """ Main program for OverlapIntegral
        """
        dt = utils.Dtime("OverlapIntegral")
        self._summary = {}
        chans =self.getkey("chans")
        cmap = self.getkey("cmap")
        normalize = self.getkey("normalize")
        doCross = True
        doCross = False
        myplot = APlot(pmode=self._plot_mode,ptype=self._plot_type,abspath=self.dir())
        
        dt.tag("start")
 
        n = len(self._bdp_in)
        if n==0:
            raise Exception,"Need at least 1 input Image_BDP "
        logging.debug("Processing %d input maps" % n)
        data = range(n)     # array in which each element is placeholder for the data
        mdata = range(n)    # array to hold the max in each array
        summarytable = admit.util.Table()
        summarytable.columns = ["File name","Spectral Line ID"]
        summarytable.description = "Images used in Overlap Integral"
        for i in range(n):
            bdpfile = self._bdp_in[i].getimagefile(bt.CASA)
            if hasattr(self._bdp_in[i],"line"):
                line = getattr(self._bdp_in[i],"line")
                logging.info("Map %d: %s" % (i,line.uid))
                lineid = line.uid
            else:
                lineid="no line"
            data[i] = casautil.getdata(self.dir(bdpfile),chans)
            mdata[i] = data[i].max()
            logging.info("shape[%d] = %s with %d good data" % (i,data[i].shape,data[i].count()))
            if i==0:
                shape = data[i].shape
                outfile = self.mkext("testOI","oi")
            else:
                if shape != data[i].shape:
                    raise Exception,"Shapes not the same, cannot overlap them"
            # collect the file names and line identifications for the summary
            summarytable.addRow([bdpfile,lineid])
        logging.regression("OI: %s" % str(mdata))
                    
        if len(shape)>2 and shape[2] > 1:
            raise Exception,"Cannot handle 3D cubes yet"

        if doCross:
            # debug: produce all cross-corr's of the N input maps (expensive!)
            crossn(data, myplot)
            dt.tag("crossn")

        b1 = Image_BDP(outfile)
        self.addoutput(b1)
        b1.setkey("image", Image(images={bt.CASA:outfile}))

        dt.tag("open")

        useClone = True

        # to create an output dataset, clone the first input, but using the chans=ch0~ch1
        # e.g. using imsubimage(infile,outfile=,chans=
        if len(chans) > 0:
            # ia.regrid() doesn't have the chans=
            taskinit.ia.open(self.dir(self._bdp_in[0].getimagefile(bt.CASA)))
            taskinit.ia.regrid(outfile=self.dir(outfile))
            taskinit.ia.close()
        else:
            # 2D for now
            if not useClone:
                logging.info("OVERLAP out=%s" % outfile)
                taskinit.ia.fromimage(infile=self.dir(self._bdp_in[0].getimagefile(bt.CASA)),
                                      outfile=self.dir(outfile), overwrite=True)
                taskinit.ia.close()
        dt.tag("fromimage")


        if n==3:
            # RGB
            logging.info("RGB mode")
            out = rgb1(data[0],data[1],data[2], normalize)
        else:
            # simple sum
            out = data[0]
            for i in range(1,n):
                out = out + data[i]

        if useClone:
            casautil.putdata_raw(self.dir(outfile),out,clone=self.dir(self._bdp_in[0].getimagefile(bt.CASA)))
        else:
            taskinit.ia.open(self.dir(outfile))
            s1 = taskinit.ia.shape()
            s0 = [0,0,0,0]
            r1 = taskinit.rg.box(blc=s0,trc=s1)
            pixeldata = out.data
            pixelmask = ~out.mask
            taskinit.ia.putregion(pixels=pixeldata, pixelmask=pixelmask, region=r1)
            taskinit.ia.close()

        title = "OverlapIntegral"
        pdata = np.rot90(out.squeeze())
        logging.info("PDATA: %s" % str(pdata.shape))
        
        myplot.map1(pdata,title,"testOI",thumbnail=True,cmap=cmap)
        
        #-----------------------------
        # Populate summary information
        #-----------------------------
        taskargs = "chans=%s cmap=%s" % (chans, cmap)
        imname = ""
        thumbnailname = ""
        # uncomment when ready.
        imname = myplot.getFigure(figno=myplot.figno,relative=True)
        thumbnailname = myplot.getThumbnail(figno=myplot.figno,relative=True)
        #@todo fill in caption with more info - line names, etc.
        caption = "Need descriptive caption here"
        summaryinfo = [summarytable.serialize(),imname,thumbnailname,caption]
        self._summary["overlap"] = SummaryEntry(summaryinfo,
                                   "OverlapIntegral_AT",
                                   self.id(True),taskargs)
        #-----------------------------
        dt.tag("done")
        dt.end()
예제 #2
0
파일: SFind2D_AT.py 프로젝트: teuben/admit
    def run(self):
        """ The run method creates the BDP

            Parameters
            ----------
            None

            Returns
            -------
            None
        """
        dt = utils.Dtime("SFind2D")               # tagging time
        self._summary = {}
        # get key words that user input
        nsigma = self.getkey("numsigma")
        sigma  = self.getkey("sigma")
        region = self.getkey("region")
        robust = self.getkey("robust")
        snmax  = self.getkey("snmax")
        ds9 = True                                     # writes a "ds9.reg" file
        mpl = True                                     # aplot.map1() plot
        dynlog = 20.0                                  # above this value of dyn range finder chart is log I-scaled
        bpatch = True                                  # patch units to Jy/beam for ia.findsources()
        
        # get the input casa image from bdp[0]
        bdpin = self._bdp_in[0]
        infile = bdpin.getimagefile(bt.CASA)
        if mpl:
            data = np.flipud(np.rot90(casautil.getdata(self.dir(infile)).data))

        # check if there is a 2nd image (which will be a PB)
        for i in range(len(self._bdp_in)):
            print 'BDP',i,type(self._bdp_in[i])

        if self._bdp_in[2] != None:
            bdpin_pb  = self._bdp_in[1]            
            bdpin_cst = self._bdp_in[2]
            print "Need to process PB"
        else:
            bdpin_pb  = None
            bdpin_cst = self._bdp_in[1]
            print "No PB given"
            

        # get the output bdp basename
        slbase = self.mkext(infile,'sl')

        # make sure it's a 2D map
        if not casautil.mapdim(self.dir(infile),2):
            raise Exception,"Input map dimension not 2: %s" % infile

        # arguments for imstat call if required
        args = {"imagename" : self.dir(infile)}
        if region != "":
            args["region"] = region
        dt.tag("start")

        # The following code sets the sigma level for searching for sources using
        # the sigma and snmax keyword as appropriate
        # if no CubeStats BDP was given and no sigma was specified:
        # find a noise level via casa.imstat()
        # if a CubeStat_BDP is given get it from there.
        if bdpin_cst == None:
            # get statistics from input image with imstat because no CubeStat_BDP
            stat  = casa.imstat(**args)
            dmin  = float(stat["min"][0])                 # these would be wrong if robust were used already
            dmax  = float(stat["max"][0])
            args.update(casautil.parse_robust(robust))    # only now add robust keywords for the sigma
            stat  = casa.imstat(**args)            
            if sigma <= 0.0 :
                sigma = float(stat["sigma"][0])
            dt.tag("imstat")
        else:
            # get statistics from CubeStat_BDP 
            sigma = bdpin_cst.get("sigma")
            dmin  = bdpin_cst.get("minval")
            dmax  = bdpin_cst.get("maxval")

        self.setkey("sigma",sigma)
        # calculate cutoff based either on RMS or dynamic range limitation
        drange = dmax/(nsigma*sigma)
        if snmax < 0.0 :
            snmax = drange
        if drange > snmax :
            cutoff = 1.0/snmax
        else:
            cutoff = 1.0/drange
        logging.info("sigma, dmin, dmax, snmax, cutoff %g %g %g %g %g" % (sigma, dmin, dmax, snmax, cutoff))
        # define arguments for call to findsources
        args2 = {"cutoff" : cutoff}
        args2["nmax"] = 30
        if region != "" :
            args2["region"] = region
        #args2["mask"] = ""
        args2["point"] = False
        args2["width"] = 5
        args2["negfind"] = False
        # set-up for SourceList_BDP
        slbdp = SourceList_BDP(slbase)

        # connect to casa image and call casa ia.findsources tool
        taskinit.ia.open(self.dir(infile))

        # findsources() cannot deal with  'Jy/beam.km/s' ???
        # so for the duration of findsources() we patch it
        bunit = taskinit.ia.brightnessunit()
        if bpatch and bunit != 'Jy/beam':
            logging.warning("Temporarely patching your %s units to Jy/beam for ia.findsources()" % bunit) 
            taskinit.ia.setbrightnessunit('Jy/beam')
        else:
            bpatch = False
        atab = taskinit.ia.findsources(**args2)
        if bpatch:
            taskinit.ia.setbrightnessunit(bunit)
        
        taskargs = "nsigma=%4.1f sigma=%g region=%s robust=%s snmax=%5.1f" % (nsigma,sigma,str(region),str(robust),snmax)
        dt.tag("findsources")
        nsources = atab["nelements"] 
        xtab = []
        ytab = []
        logscale = False
        sumflux = 0.0
        if nsources > 0:
            # @TODO: Why are Xpix, YPix not stored in the table?
            #        -> PJT: I left them out since they are connected to an image which may not be available here
            #                but we should store the frequency of the observation here for later bandmerging
            logging.debug("%s" % str(atab['component0']['shape']))
            logging.info("Right Ascen.  Declination   X(pix)   Y(pix)      Peak       Flux    Major   Minor    PA    SNR")
            funits = atab['component0']['flux']['unit']
            if atab['component0']['shape'].has_key('majoraxis'):
                sunits = atab['component0']['shape']['majoraxis']['unit']
                aunits = atab['component0']['shape']['positionangle']['unit']
            else:
                sunits = "n/a"
                aunits = "n/a"
            punits = taskinit.ia.summary()['unit']
            logging.info("                                               %s       %s    %s   %s   %s" % (punits,funits,sunits,sunits,aunits))
            #
            # @todo future improvement is to look at image coordinates and control output appropriately
            #
            if ds9:
                # @todo variable name
                regname = self.mkext(infile,'ds9.reg')
                fp9 = open(self.dir(regname),"w!")
            for i in range(nsources):
                c = "component%d" % i
                name = "%d" % (i+1)
                r = atab[c]['shape']['direction']['m0']['value']
                d = atab[c]['shape']['direction']['m1']['value']
                pixel = taskinit.ia.topixel([r,d])
                xpos = pixel['numeric'][0]
                ypos = pixel['numeric'][1]
                rd = taskinit.ia.toworld([xpos,ypos],'s')
                ra = rd['string'][0][:12]
                dec = rd['string'][1][:12]
                flux = atab[c]['flux']['value'][0]
                sumflux = sumflux + flux
                if atab[c]['shape'].has_key('majoraxis'):
                    smajor = atab[c]['shape']['majoraxis']['value']
                    sminor = atab[c]['shape']['minoraxis']['value']
                    sangle = atab[c]['shape']['positionangle']['value']
                else:
                    smajor = 0.0
                    sminor = 0.0
                    sangle = 0.0
                peakstr = taskinit.ia.pixelvalue([xpos,ypos,0,0])
                if len(peakstr) == 0:
                    logging.warning("Problem with source %d @ %d,%d" % (i,xpos,ypos))
                    continue
                peakf = peakstr['value']['value']
                snr = peakf/sigma
                if snr > dynlog:
                    logscale = True
                logging.info("%s %s %8.2f %8.2f %10.3g %10.3g %7.3f %7.3f %6.1f %6.1f" % (ra,dec,xpos,ypos,peakf,flux,smajor,sminor,sangle,snr))
                
                xtab.append(xpos)
                ytab.append(ypos)
                slbdp.addRow([name,ra,dec,flux,peakf,smajor,sminor,sangle])
                if ds9:
                    ras = ra
                    des = dec.replace('.',':',2)
                    msg = 'ellipse(%s,%s,%g",%g",%g) # text={%s}' % (ras,des,smajor,sminor,sangle+90.0,i+1)
                    fp9.write("%s\n" % msg)
            if ds9:
                fp9.close()
                logging.info("Wrote ds9.reg")
            dt.tag("table")
        logging.regression("CONTFLUX: %d %g" % (nsources,sumflux))
        

        summary = taskinit.ia.summary()
        beammaj = summary['restoringbeam']['major']['value']
        beammin = summary['restoringbeam']['minor']['value']
        beamunit = summary['restoringbeam']['minor']['unit']
        beamang = summary['restoringbeam']['positionangle']['value']
        angunit = summary['restoringbeam']['positionangle']['unit']
        # @todo add to table comments?
        logging.info(" Fitted Gaussian size; NOT deconvolved source size.")
        logging.info(" Restoring Beam: Major axis: %10.3g %s , Minor axis: %10.3g %s , PA: %5.1f %s" % (beammaj, beamunit, beammin, beamunit, beamang, angunit))
        # form into a xml table
        
        # output is a table_bdp
        self.addoutput(slbdp)

        # instantiate a plotter for all plots made herein
        myplot = APlot(ptype=self._plot_type,pmode=self._plot_mode,abspath=self.dir())

        # make output png with circles marking sources found
        if mpl:
            circles=[]
            nx = data.shape[1]             # data[] array was already flipud(rot90)'d
            ny = data.shape[0]             # 
            for (x,y) in zip(xtab,ytab):
                circles.append([x,y,1])
            # @todo variable name
            if logscale:
                logging.warning("LogScaling applied")
                data = data/sigma
                data = np.where(data<0,-np.log10(1-data),+np.log10(1+data))
            title = "SFind2D: %d sources" % nsources
            myplot.map1(data,title,slbase,thumbnail=True,circles=circles)

        #---------------------------------------------------------
        # Get the figure and thumbmail names and create a caption
        #---------------------------------------------------------
        imname = myplot.getFigure(figno=myplot.figno,relative=True)
        thumbnailname = myplot.getThumbnail(figno=myplot.figno,relative=True)
        caption = "Image of input map with sources found by SFind2D overlayed in green."
        slbdp.table.description="Table of source locations and sizes (not deconvolved)"
 
        #---------------------------------------------------------
        # Add finder image to the BDP
        #---------------------------------------------------------
        image = Image(images={bt.PNG: imname}, 
                      thumbnail=thumbnailname, 
                      thumbnailtype=bt.PNG, description=caption)
        slbdp.image.addimage(image, "finderimage")

        #-------------------------------------------------------------
        # Create the summary entry for the table and image
        #-------------------------------------------------------------
        self._summary["sources"] = SummaryEntry([slbdp.table.serialize(),
                                                 slbdp.image.serialize()],
                                                "SFind2D_AT", 
                                                self.id(True), taskargs)
        
        dt.tag("done")
        dt.end()
예제 #3
0
파일: PVCorr_AT.py 프로젝트: teuben/admit
class PVCorr_AT(AT):
    """PV correllation in a PVSlice map.

       PVCorr_AT computes a cross-correlation of a feature in a PVSlice with the 
       whole PVSlice, looking for repeated patterns to detect spectral lines. Much
       like the output from CubeStats_AT and CubeSpectrum_AT, this table can then be
       given to LineID_AT to attempt a line identification.

       See also :ref:`PVCorr-AT-Design` for the design document.

       **Keywords**

          **numsigma**: float 
            Minimum intensity, in terms of sigma, above which a selected portion
            of the spectrum will be used for cross-correlation.
            Default: 3.0.

          **range**: integer list
            If given, it has to be a list with 2 channel numbers, the first and last channel
            (0-based channels) of the range which to use for the cross-correlation.
            Default: [].

          **nchan**: integer
            The number of channels (in case range= was not used) that defines the line.
            The line is centers on the strongest point in the input PV-map.
            If 0 is given, it will watershed down from the strongest line.
            Default: 0.

       **Input BDPs**

          **PVSlice_BDP**: count: 1
            Input PV Slice. As created with e.g. PVSlice_AT.

          **CubeStats_BDP**: count: 1
            Input cube statistics from which the RMS is taken.

       **Output BDPs**

          **PVCorr_BDP**: count: 1
            Output table.
       

    """

    def __init__(self,**keyval):
        keys = {"numsigma" : 3.0,    # N-sigma
                "range"    : [],     # optional channel range
                "nchan"    : 0,      # number of channels around the channel where the peak is
               }
        AT.__init__(self,keys,keyval)
        self._version = "1.0.1"
        self.set_bdp_in([(Image_BDP,1,bt.REQUIRED),
                         # @todo optional 2nd PVSlice can be used to draw the template from
                         (CubeStats_BDP,1,bt.REQUIRED)])
        self.set_bdp_out([(PVCorr_BDP,1)])

    def summary(self):
        """Returns the summary dictionary from the AT, for merging
           into the ADMIT Summary object.

           PVCorr_AT adds the following to ADMIT summary:

           .. table::
              :class: borderless

              +----------+----------+-----------------------------------+
              |   Key    | type     |    Description                    |
              +==========+==========+===================================+
              | pvcorr   | list     |   correlation diagram             |
              +----------+----------+-----------------------------------+
           
           Parameters
           ----------
           None

           Returns
           -------
           dict
               Dictionary of SummaryEntry
        """
        if hasattr(self,"_summary"):
            return self._summary
        else:
            return {}

    def run(self):
        dt = utils.Dtime("PVCorr")
        self._summary = {}

        numsigma = self.getkey("numsigma")
        mode = 1                                            # PV corr mode (1,2,3)
        normalize = True
        # normalize = False

        b1 = self._bdp_in[0]                                # PVSlice_BDP
        fin = b1.getimagefile(bt.CASA)                      # CASA image
        data = casautil.getdata_raw(self.dir(fin))          # grab the data as a numpy array
        self.myplot = APlot(ptype=self._plot_type,pmode=self._plot_mode,abspath=self.dir())
        #print 'DATA[0,0]:',data[0,0]
        #print 'pv shape: ',data.shape
        npos = data.shape[0]
        nvel = data.shape[1]
        dt.tag("getdata")

        b2 = self._bdp_in[1]                                # CubeStats_BDP
        sigma = b2.sigma                                    # global sigma in the cube
        cutoff = numsigma * sigma
        freq =  b2.table.getColumnByName("frequency")

        chans = self.getkey("range")                        # range of channels, if used
        if len(chans) > 0:
            if len(chans) != 2:
                logging.fatal("range=%s" % chans)
                raise Exception,"range= needs two values, left and right (inclusive) channel"
            ch0 = chans[0]
            ch1 = chans[1]
        else:
            nchan = self.getkey("nchan")
            imstat0 = casa.imstat(self.dir(fin))         # @todo   can use data[] now
            xmaxpos = imstat0['maxpos'][0]
            ymaxpos = imstat0['maxpos'][1]
            logging.info("MAXPOS-VEL %s %g" % (str(imstat0['maxpos']),imstat0['max'][0]))
            if nchan > 0:
                # expand around it, later ch0,ch1 will be checked for running off the edge
                ch0 = ymaxpos - nchan/2
                ch1 = ymaxpos + nchan/2
            else:
                # watershed down to find ch0 and ch1 ?
                # this doesn't work well in crowded areas
                ch0 = ymaxpos
                ch1 = ymaxpos
                spmax = data.max(axis=0)
                k = spmax.argmax()
                n = len(spmax)
                logging.debug('spmax %s %d %g' % (str(spmax.shape),k,spmax[k]))
                # find lower cutoff
                for i in range(n):
                    ch0 = ymaxpos - i
                    if ch0<0: break
                    if spmax[ch0] < cutoff: break
                ch0 = ch0 + 1
                # find higher cutoff
                for i in range(n):
                    ch1 = ymaxpos + i
                    if ch1==n: break
                    if spmax[ch1] < cutoff: break
                ch1 = ch1 - 1
            dt.tag("imstat")

        
        bdp_name = self.mkext(fin,"pvc")                    # output PVCorr_BDP
        b3 = PVCorr_BDP(bdp_name)
        self.addoutput(b3)

        if ch0<0 or ch1>=nvel:
            # this probably only happens to small cubes (problematic for PVCorr)
            # or when the strongest line is really close to the edge of the band
            # (which is probably ok)
            if ch0<0 and ch1>=nvel:
                logging.warning("Serious issues with the size of this cube")
            if ch0<0: 
                logging.warning("Resetting ch0 edge to 0")
                ch0=0
            if ch1>=nvel: 
                ch1=nvel-1
                logging.warning("Resetting ch1 edge to the maximum")

        if ch0 > ch1:
            logging.warning("Sanity swapping ch0,1 due to likely noisy data")
            ch0,ch1 = ch1,ch0

        if mode == 1:
            out,rms = mode1(data, ch0, ch1, cutoff, normalize)
            corr = out
        elif mode == 2:
            out,rms = mode2(data, ch0, ch1, cutoff)             # slower 2D version
            corr = out[npos/2,:]                                # center cut, but could also try feature detection
        elif mode == 3:
            out,rms = self.mode3(data, ch0, ch1, cutoff)        # Doug's faster 2D version
            # get the peak of each column
            corr = np.amax(out,axis=0)
        # print "PVCORR SHAPE ",corr.shape," mode", mode
        if len(corr) > 0:
            # print "SHAPE out:",out.shape,corr.shape,npos/2
            ch  = range(len(corr))
            if len(corr) != len(freq):
                logging.fatal("ch (%d) and freq (%d) do not have same size" % (len(corr),len(freq)))
                raise Exception,"ch and freq do not have same dimension"
            dt.tag("mode")
            labels = ["channel",   "frequency",  "pvcorr"]
            units  = ["number",    "GHz",        "N/A"]
            data   = (ch,          freq,         corr)
            table = Table(columns=labels,units=units,data=np.column_stack(data))
        else:
            # still construct a table, but with no rows
            labels = ["channel",   "frequency",  "pvcorr"]
            units  = ["number",    "GHz",        "N/A"]
            table = Table(columns=labels,units=units)
        b3.setkey("table",table)
        b3.setkey("sigma",float(rms))
        dt.tag("table")
        if len(corr) > 0:
            table.exportTable(self.dir("testPVCorr.tab"),cols=['frequency','pvcorr'])
            test_single(ch,freq,corr)

            logging.regression("PVC: %f %f" % (corr.min(),corr.max()))

            title = 'PVCorr mode=%d [%d,%d] %g' % (mode,ch0,ch1,cutoff)
            x = ch
            xlab = 'Channel'
            y = [corr]
            ylab = 'PV Correlation'
            p1 = "%s_%d" % (bdp_name,0)
            segp = []
            segp.append( [0,len(ch),0.0,0.0] )
            segp.append( [0,len(ch),3.0*rms, 3.0*rms] )
            # @todo:   in principle we know with given noise and  size of box, what the sigma in pvcorr should be
            self.myplot.plotter(x,y,title,figname=p1,xlab=xlab,ylab=ylab,segments=segp, thumbnail=True)

            #out1 = np.rot90 (data.reshape((nvel,npos)) )
            if mode > 1:
                self.myplot.map1(data=out,title="testing PVCorr_AT:  mode%d"%mode,figname='testPVCorr', thumbnail=True)

            taskargs = "numsigma=%.1f range=[%d,%d]" % (numsigma,ch0,ch1)
            caption = "Position-velocity correlation plot"
            thumbname = self.myplot.getThumbnail(figno=self.myplot.figno,relative=True)
            figname   = self.myplot.getFigure(figno=self.myplot.figno,relative=True)
            image = Image(images={bt.PNG: figname}, thumbnail=thumbname, thumbnailtype=bt.PNG,
                description=caption)
            b3.image.addimage(image, "pvcorr")

            self._summary["pvcorr"] = SummaryEntry([figname,thumbname,caption,fin],"PVCorr_AT",self.id(True),taskargs)
        else:
            self._summary["pvcorr"] = None
            logging.warning("No summary")
            logging.regression("PVC: -1")

        dt.tag("done")
        dt.end()

    def mode3(self, data, v0, v1, dmin=0.0):
        """ v0..v1 (both inclusive) are channel selections
            threshold on dmin
            @todo the frequency axis is not properly calibrated here
            @todo a full 2D is slow, we only need the 1D version
        """
        print "PVCorr mode3: v0,1=",v0,v1
        smin = data.min()
        #s = data[v0:v1+1,:]
        s = data[:,v0:v1+1]
        if dmin==0.0:
            logging.warning("Using all data in crosscorr")
            f = s
        else:
            f = np.where(s>dmin,s,0)
        # find out where the zeros are
        temp = np.amax(f,axis=1)
        nz = np.nonzero(temp)
        # trim the kernel in the y direction, removing rows that are all 0.0
        f = f[nz[0][0]:nz[0][-1],:]
        f0 = np.where(s>smin,1,0)
        f1 = np.where(s>dmin,1,0)
        fmax = f.max()
        print "PVCorr mode3:",f1.sum(),'/',f0.sum(),'min/max',smin,fmax
        out =  scipy.signal.correlate2d(data,f,mode='same')
        self.myplot.map1(data=f,title="PVCorr 2D Kernel",figname='PVCorrKernel', thumbnail=True)

        print 'PVCorr min/max:',out.min(),out.max()
        n1,m1,s1,n2,m2,s2 = stats.mystats(out.flatten())
        print "PVCorr stats", n1,m1,s1,n2,m2,s2
        rms_est = s2/np.sqrt(f1.sum())
        return out,rms_est
예제 #4
0
    def run(self):
        """Runs the task.

           Parameters
           ----------
           None

           Returns
           -------
           None
        """
        self._summary = {}
        pvslicesummary = []
        sumslicetype = 'slice'
        sliceargs = []
        dt = utils.Dtime("PVSlice")
        # import here, otherwise sphinx cannot parse
        from impv import impv
        from imsmooth import imsmooth

        pvslice = self.getkey(
            'slice')  # x_s,y_s,x_e,y_e (start and end of line)
        pvslit = self.getkey(
            'slit')  # x_c,y_c,len,pa  (center, length and PA of line)

        # BDP's used :

        #   b10 = input BDP
        #   b11 = input BDP (moment)
        #   b12 = input BDP (new style cubestats w/ maxpos)
        #   b2 = output BDP

        b10 = self._bdp_in[0]  # input SpwCube
        fin = b10.getimagefile(bt.CASA)  # input name

        b11 = self._bdp_in[1]  #
        b12 = self._bdp_in[2]

        clip = self.getkey('clip')  # clipping to data for Moment-of-Inertia
        gamma = self.getkey(
            'gamma')  # gamma factor to data for Moment-of-Inertia

        if b11 != None and len(pvslice) == 0 and len(pvslit) == 0:
            # if a map (e.g. cubesum ) given, and no slice/slit, get a best pvslice from that
            (pvslice, clip) = map_to_slit(self.dir(b11.getimagefile(bt.CASA)),
                                          clip=clip,
                                          gamma=gamma)
        elif b12 != None and len(pvslice) == 0 and len(pvslit) == 0:
            # PPP doesn't seem to work too well yet
            logging.debug("testing new slice computation from a PPP")
            max = b12.table.getColumnByName("max")
            maxposx = b12.table.getColumnByName("maxposx")
            maxposy = b12.table.getColumnByName("maxposy")
            if maxposx == None:
                raise Exception, "PPP was not enabled in your CubeStats"
            (pvslice, clip) = tab_to_slit([maxposx, maxposy, max],
                                          clip=clip,
                                          gamma=gamma)
        sliceargs = deepcopy(pvslice)
        if len(sliceargs) == 0:
            logging.warning("no slice for plot yet")
        # ugh, this puts single quotes around the numbers
        formattedslice = str(["%.2f" % a for a in sliceargs])
        taskargs = "slice=" + formattedslice
        dt.tag("slice")

        pvname = self.mkext(fin, 'pv')  # output image name
        b2 = PVSlice_BDP(pvname)
        self.addoutput(b2)

        width = self.getkey(
            'width'
        )  # @todo also:  "4arcsec"  (can't work since it's a single keyword)

        if len(pvslice) == 4:
            start = pvslice[:
                            2]  # @todo also allow:   ["14h20m20.5s","-30d45m25.4s"]
            end = pvslice[2:]
            impv(self.dir(fin),
                 self.dir(pvname),
                 "coords",
                 start=start,
                 end=end,
                 width=width,
                 overwrite=True)
        elif len(pvslit) == 4:
            sumslicetype = 'slit'
            sliceargs = deepcopy(pvslit)
            formattedslice = str(["%.2f" % a for a in sliceargs])
            taskargs = "slit=" + formattedslice
            # length="40arcsec" same as {"value": 40, "unit": "arcsec"})
            center = pvslit[:
                            2]  # @todo also:   ["14h20m20.5s","-30d45m25.4s"].
            length = pvslit[
                2]  # @todo also:   "40arcsec", {"value": 40, "unit": "arcsec"})
            if type(pvslit[3]) is float or type(pvslit[3]) is int:
                pa = "%gdeg" % pvslit[3]
            else:
                pa = pvslit[3]
            impv(self.dir(fin),
                 self.dir(pvname),
                 "length",
                 center=center,
                 length=length,
                 pa=pa,
                 width=width,
                 overwrite=True)
        else:
            raise Exception, "no valid input  slit= or slice= or bad Moment_BDP input"
        sliceargs.append(width)
        taskargs = taskargs + " width=%d" % width
        dt.tag("impv")

        smooth = self.getkey('pvsmooth')
        if len(smooth) > 0:
            if len(smooth) == 1:
                smooth.append(smooth[0])
            major = '%dpix' % smooth[0]
            minor = '%dpix' % smooth[1]
            logging.info("imsmooth PV slice: %s %s" % (major, minor))
            imsmooth(self.dir(pvname),
                     outfile=self.dir(pvname) + '.smooth',
                     kernel='boxcar',
                     major=major,
                     minor=minor)
            dt.tag("imsmooth")
            # utils.rename(self.dir(pvname)+'.smooth',self.dir(pvname))
            # @todo  we will keep the smooth PVslice for inspection, no further flow work

        # get some statistics
        data = casautil.getdata_raw(self.dir(pvname))
        rpix = stats.robust(data.flatten())
        r_mean = rpix.mean()
        r_std = rpix.std()
        r_max = rpix.max()
        logging.info("PV stats: mean/std/max %f %f %f" %
                     (r_mean, r_std, r_max))
        logging.regression("PVSLICE: %f %f %f" % (r_mean, r_std, r_max))

        myplot = APlot(ptype=self._plot_type,
                       pmode=self._plot_mode,
                       abspath=self.dir())

        # hack to get a slice on a mom0map
        # @todo   if pmode is not png, can viewer handle this?
        figname = pvname + ".png"
        slicename = self.dir(figname)
        overlay = pvname + "_overlay"
        if b11 != None:
            f11 = b11.getimagefile(bt.CASA)
            tb = taskinit.tbtool()
            tb.open(self.dir(f11))
            data = tb.getcol('map')
            nx = data.shape[0]
            ny = data.shape[1]
            tb.close()
            d1 = np.flipud(np.rot90(data.reshape((nx, ny))))
            if len(pvslice) == 4:
                segm = [[pvslice[0], pvslice[2], pvslice[1], pvslice[3]]]
                pa = np.arctan2(pvslice[2] - pvslice[0],
                                pvslice[1] - pvslice[3]) * 180.0 / np.pi
                title = "PV Slice location : slice PA=%.1f" % pa
                xcen = (pvslice[0] + pvslice[2]) / 2.0
                ycen = (pvslice[1] + pvslice[3]) / 2.0
            elif len(pvslit) == 4:
                # can only do this now if using pixel coordinates
                xcen = pvslit[0]
                ycen = pvslit[1]
                slen = pvslit[2]
                pard = pvslit[3] * np.pi / 180.0
                cosp = np.cos(pard)
                sinp = np.sin(pard)
                halflen = 0.5 * slen
                segm = [[
                    xcen - halflen * sinp, xcen + halflen * sinp,
                    ycen + halflen * cosp, ycen - halflen * cosp
                ]]
                pa = pvslit[3]
                title = "PV Slice location : slit PA=%g" % pa
            else:
                # bogus, some error in pvslice
                logging.warning("bogus segm since pvslice=%s" % str(pvslice))
                segm = [[10, 20, 10, 20]]
                pa = -999.999
                title = "PV Slice location - bad PA"
            logging.info("MAP1 segm %s %s" % (str(segm), str(pvslice)))
            if d1.max() < clip:
                logging.warning("datamax=%g,  clip=%g" % (d1.max(), clip))
                title = title + ' (no signal over %g?)' % clip
                myplot.map1(d1,
                            title,
                            overlay,
                            segments=segm,
                            thumbnail=True,
                            zoom=self.getkey("zoom"),
                            star=[xcen, ycen])
            else:
                myplot.map1(d1,
                            title,
                            overlay,
                            segments=segm,
                            range=[clip],
                            thumbnail=True,
                            zoom=self.getkey("zoom"),
                            star=[xcen, ycen])
            dt.tag("plot")
            overlayname = myplot.getFigure(figno=myplot.figno, relative=True)
            overlaythumbname = myplot.getThumbnail(figno=myplot.figno,
                                                   relative=True)
            Qover = True
        else:
            Qover = False

        implot = ImPlot(pmode=self._plot_mode,
                        ptype=self._plot_type,
                        abspath=self.dir())
        implot.plotter(rasterfile=pvname, figname=pvname, colorwedge=True)
        thumbname = implot.getThumbnail(figno=implot.figno, relative=True)
        figname = implot.getFigure(figno=implot.figno, relative=True)
        if False:
            # debug:
            #
            # @todo    tmp1 is ok, tmp2 is not displaying the whole thing
            #          use casa_imview, not casa.imview - if this is enabled.
            # old style:   viewer() seems to plot full image, but imview() wants square pixels?
            casa.viewer(infile=self.dir(pvname),
                        outfile=self.dir('tmp1.pv.png'),
                        gui=False,
                        outformat="png")
            casa.imview(raster={
                'file': self.dir(pvname),
                'colorwedge': True,
                'scaling': -1
            },
                        axes={'y': 'Declination'},
                        out=self.dir('tmp2.pv.png'))
            #
            # -> this one works, axes= should be correct
            # imview(raster={'file':'x.pv',  'colorwedge' : True, 'scaling':-1},axes={'y':'Frequency'})
            #
            # @TODO big fixme, we're going to reuse 'tmp1.pv.png' because implot give a broken view
            figname = 'tmp1.pv.png'

        # @todo   technically we don't know what map it was overlay'd on.... CubeSum/Moment0
        overlaycaption = "Location of position-velocity slice overlaid on a CubeSum map"
        pvcaption = "Position-velocity diagram through emission centroid"
        pvimage = Image(images={
            bt.CASA: pvname,
            bt.PNG: figname
        },
                        thumbnail=thumbname,
                        thumbnailtype=bt.PNG,
                        description=pvcaption)
        b2.setkey("image", pvimage)
        b2.setkey("mean", float(r_mean))
        b2.setkey("sigma", float(r_std))
        if Qover:
            thispvsummary = [
                sumslicetype, sliceargs, figname, thumbname, pvcaption,
                overlayname, overlaythumbname, overlaycaption, pvname, fin
            ]
        else:
            thispvsummary = [
                sumslicetype, sliceargs, figname, thumbname, pvcaption, pvname,
                fin
            ]

        # Yes, this is a nested list.  Against the day when PVSLICE can
        # compute multiple slices per map.
        pvslicesummary.append(thispvsummary)
        self._summary["pvslices"] = SummaryEntry(pvslicesummary, "PVSlice_AT",
                                                 self.id(True), taskargs)

        dt.tag("done")
        dt.end()