예제 #1
0
def train(args, ADMM, model, device, train_loader, optimizer, epoch, writer, masks):
    model.train()

    #print(masks)
    ce_loss = None
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.cuda(), target.cuda()
        optimizer.zero_grad()
        output = model(data)
        ce_loss = F.cross_entropy(output, target)

        admm.z_u_update(args, ADMM, model, device, train_loader, optimizer, epoch, data, batch_idx, writer)  # update Z and U variables
        ce_loss, admm_loss, mixed_loss = admm.append_admm_loss(args, ADMM, model, ce_loss)  # append admm losss

        mixed_loss.backward()

        
        for name, W in model.named_parameters():
            for mask in masks:
                if name in mask:
                    W.grad *= mask[name]

        optimizer.step()
        
        if batch_idx % args.log_interval == 0:
            print("({}) cross_entropy loss: {}, mixed_loss : {}".format(args.optmzr, ce_loss, mixed_loss))
            print('admm Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                       100. * batch_idx / len(train_loader), ce_loss.item()))
예제 #2
0
def train(config,ADMM,device,train_loader,optimizer,epoch):
    config.model.train()
    
    adv_loss = None
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        
        if config.gpu is not None:
            data = data.cuda(config.gpu, non_blocking = True)
            target = target.cuda(config.gpu,non_blocking = True)        
        
        optimizer.zero_grad()
        nat_output,adv_output,pert_inputs = config.model(data,target)
        
        nat_loss = F.cross_entropy(nat_output, target)        
        adv_loss = F.cross_entropy(adv_output, target)
        
        
        if config.admm:
            admm.admm_update(config,ADMM,device,train_loader,optimizer,epoch,data,batch_idx)   # update Z and U        
            adv_loss,admm_loss,mixed_loss = admm.append_admm_loss(config,ADMM,adv_loss) # append admm losss

        
        if config.admm:
            mixed_loss.backward()
        else:
            adv_loss.backward()
            #nat_loss.backward()
            
        if config.masked_progressive:
            with torch.no_grad():            
                for name,W in config.model.named_parameters():
                    if name in config.zero_masks:
                            W.grad *=config.zero_masks[name]


        if config.masked_retrain:
            with torch.no_grad():
                for name,W in config.model.named_parameters():
                    if name in config.masks:
                            W.grad *=config.masks[name]

           
        optimizer.step()
        if batch_idx % config.print_freq == 0:
             print ("nat_cross_entropy loss: {}  adv_cross_entropy loss : {}".format(nat_loss,adv_loss))
             print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), adv_loss.item()))
예제 #3
0
def train(lr, epoch = 0):
    # Turn on training mode which enables dropout.
    model.train()
    total_loss = 0.
    start_time = time.time()
    ntokens = len(corpus.dictionary)
    hidden = model.init_hidden(args.batch_size)
    
    for batch, i in enumerate(range(0, train_data.size(0) - 1, args.bptt)):
        data, targets = get_batch(train_data, i)
        # Starting each batch, we detach the hidden state from how it was previously produced.
        # If we didn't, the model would try backpropagating all the way to start of the dataset.
        hidden = repackage_hidden(hidden)
        model.zero_grad()
        output, hidden = model(data, hidden)
        loss = criterion(output.view(-1, ntokens), targets)
        # if args.admm:
        if stage == 'admm':
            ce_loss = loss
            admm.admm_update(args,ADMM,model,None,None,None,epoch,None,batch)   # update Z and U        
            ce_loss,admm_loss,mixed_loss = admm.append_admm_loss(args,ADMM,model,ce_loss) # append admm losss
            loss = mixed_loss
        loss.backward()

        # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
        torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
        if stage == 'masked_retrain':
            for name,W in model.named_parameters():
                if name in config.masks:
                    W.grad.data *= config.masks[name]
        for p in model.parameters():
            p.data.add_(-lr, p.grad.data)

        total_loss += loss.item()

        if batch % args.log_interval == 0 and batch > 0:
            cur_loss = total_loss / args.log_interval
            elapsed = time.time() - start_time
            print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
                    'loss {:5.2f} | ppl {:8.2f}'.format(
                epoch, batch, len(train_data) // args.bptt, lr,
                elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss)))
            total_loss = 0
            start_time = time.time()
예제 #4
0
def train(config, ADMM, device, train_loader, criterion, optimizer, scheduler,
          epoch):
    config.model.train()

    ce_loss = None
    for batch_idx, (data, target) in enumerate(train_loader):

        # adjust learning rate
        if config.admm:
            admm.admm_adjust_learning_rate(optimizer, epoch, config)
        else:
            if scheduler is not None:
                scheduler.step()

        data, target = data.to(device), target.to(device)
        if config.gpu is not None:
            data = data.cuda(config.gpu, non_blocking=True)
            target = target.cuda(config.gpu, non_blocking=True)

        if config.mixup:
            data, target_a, target_b, lam = mixup_data(data, target,
                                                       config.alpha)

        optimizer.zero_grad()
        output = config.model(data)

        if config.mixup:
            ce_loss = mixup_criterion(criterion, output, target_a, target_b,
                                      lam, config.smooth)
        else:
            ce_loss = criterion(output, target, smooth=config.smooth)

        if config.admm:
            admm.admm_update(config, ADMM, device, train_loader, optimizer,
                             epoch, data, batch_idx)  # update Z and U
            ce_loss, admm_loss, mixed_loss = admm.append_admm_loss(
                config, ADMM, ce_loss)  # append admm losss

        if config.admm:
            mixed_loss.backward()
        else:
            ce_loss.backward()

        if config.masked_progressive:
            with torch.no_grad():
                for name, W in config.model.named_parameters():
                    if name in config.zero_masks:
                        W.grad *= config.zero_masks[name]

        if config.masked_retrain:
            with torch.no_grad():
                for name, W in config.model.named_parameters():
                    if name in config.masks:
                        W.grad *= config.masks[name]

        optimizer.step()
        if batch_idx % config.print_freq == 0:

            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), ce_loss.item()))
예제 #5
0
def train(train_loader, config, ADMM, criterion, optimizer, scheduler, epoch):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()

    # switch to train mode
    config.model.train()

    end = time.time()
    for i, (input, target) in enumerate(train_loader):
        # measure data loading time
        data_time.update(time.time() - end)

        # adjust learning rate
        if config.admm:
            admm.admm_adjust_learning_rate(optimizer, epoch, config)
        else:
            scheduler.step()

        input = input.cuda(config.gpu, non_blocking=True)
        target = target.cuda(config.gpu)
        data = input

        if config.mixup:
            input, target_a, target_b, lam = mixup_data(
                input, target, config.alpha)

        # compute output
        output = config.model(input)

        if config.mixup:
            ce_loss = mixup_criterion(criterion, output, target_a, target_b,
                                      lam, config.smooth)
        else:
            ce_loss = criterion(output, target, smooth=config.smooth)

        if config.admm:
            admm.admm_update(config, ADMM, device, train_loader, optimizer,
                             epoch, data, i)  # update Z and U
            ce_loss, admm_loss, mixed_loss = admm.append_admm_loss(
                config, ADMM, ce_loss)  # append admm losss

        # measure accuracy and record loss
        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        losses.update(ce_loss.item(), input.size(0))
        top1.update(acc1[0], input.size(0))
        top5.update(acc5[0], input.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
        if config.admm:
            mixed_loss.backward()
        else:
            ce_loss.backward()
        if config.masked_progressive:
            with torch.no_grad():
                for name, W in config.model.named_parameters():
                    if name in config.zero_masks:
                        W.grad *= config.zero_masks[name]
        if config.masked_retrain:
            with torch.no_grad():
                for name, W in config.model.named_parameters():
                    if name in config.masks:
                        W.grad *= config.masks[name]

        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if i % config.print_freq == 0:
            print('Epoch: [{0}][{1}/{2}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                  'Acc@1 {top1.val:.3f} ({top1.avg:.3f})\t'
                  'Acc@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
                      epoch,
                      i,
                      len(train_loader),
                      batch_time=batch_time,
                      data_time=data_time,
                      loss=losses,
                      top1=top1,
                      top5=top5))
            print("cross_entropy loss: {}".format(ce_loss))
예제 #6
0
def train(hyp):
    # batch_time = AverageMeter()
    # data_time = AverageMeter()
    # losses = AverageMeter()

    cfg = opt.cfg
    data = opt.data
    epochs = opt.epochs  # 500200 batches at bs 64, 117263 images = 273 epochs
    batch_size = opt.batch_size
    accumulate = max(round(64 / batch_size), 1)  # accumulate n times before optimizer update (bs 64)
    weights = opt.weights  # initial training weights
    imgsz_min, imgsz_max, imgsz_test = opt.img_size  # img sizes (min, max, test)

    # Image Sizes
    gs = 32  # (pixels) grid size
    assert math.fmod(imgsz_min, gs) == 0, '--img-size %g must be a %g-multiple' % (imgsz_min, gs)
    opt.multi_scale |= imgsz_min != imgsz_max  # multi if different (min, max)
    if opt.multi_scale:
        if imgsz_min == imgsz_max:
            imgsz_min //= 1.5
            imgsz_max //= 0.667
        grid_min, grid_max = imgsz_min // gs, imgsz_max // gs
        imgsz_min, imgsz_max = int(grid_min * gs), int(grid_max * gs)
    img_size = imgsz_max  # initialize with max size

    # Configure run
    init_seeds()
    data_dict = parse_data_cfg(data)
    train_path = data_dict['train']
    test_path = data_dict['valid']
    nc = 1 if opt.single_cls else int(data_dict['classes'])  # number of classes
    hyp['cls'] *= nc / 80  # update coco-tuned hyp['cls'] to current dataset

    # Remove previous results
    for f in glob.glob('*_batch*.jpg') + glob.glob(results_file):
        os.remove(f)

    # Initialize model
    model = Darknet(cfg).to(device)

    # Optimizer

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in dict(model.named_parameters()).items():
        if '.bias' in k:
            pg2 += [v]  # biases
        elif 'Conv2d.weight' in k:
            pg1 += [v]  # apply weight_decay
        else:
            pg0 += [v]  # all else

    if opt.adam:
        # hyp['lr0'] *= 0.1  # reduce lr (i.e. SGD=5E-3, Adam=5E-4)
        optimizer = optim.Adam(pg0, lr=hyp['lr0'])
        # optimizer = AdaBound(pg0, lr=hyp['lr0'], final_lr=0.1)
    else:
        optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
    optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']})  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    print('Optimizer groups: %g .bias, %g Conv2d.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    start_epoch = 0
    best_fitness = 0.0
    # attempt_download(weights)

    
    if opt.freeze_layers:                                                                                                                                                            
        output_layer_indices = [idx - 1 for idx, module in enumerate(model.module_list) if isinstance(module, YOLOLayer)]                                                                                                                      
        freeze_layer_indices = [x for x in range(len(model.module_list)) if                                                                                                         
                                (x not in output_layer_indices) and                                                                                                               
                                (x - 1 not in output_layer_indices)]                                                                                                                 
        for idx in freeze_layer_indices:                                                                                                                                             
            for parameter in model.module_list[idx].parameters():                                                                                                                    
                parameter.requires_grad_(False)                                                                                                                                      


    # Mixed precision training https://github.com/NVIDIA/apex
    if mixed_precision:
        model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=0)

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    lf = lambda x: (((1 + math.cos(x * math.pi / epochs)) / 2) ** 1.0) * 0.95 + 0.05  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    scheduler.last_epoch = start_epoch - 1  # see link below
    # https://discuss.pytorch.org/t/a-problem-occured-when-resuming-an-optimizer/28822

    # Plot lr schedule
    # y = []
    # for _ in range(epochs):
    #     scheduler.step()
    #     y.append(optimizer.param_groups[0]['lr'])
    # plt.plot(y, '.-', label='LambdaLR')
    # plt.xlabel('epoch')
    # plt.ylabel('LR')
    # plt.tight_layout()
    # plt.savefig('LR.png', dpi=300)

    # Dataset
    dataset = LoadImagesAndLabels(train_path, img_size, batch_size,
                                  augment=True,
                                  hyp=hyp,  # augmentation hyperparameters
                                  rect=opt.rect,  # rectangular training
                                  cache_images=opt.cache_images,
                                  single_cls=opt.single_cls)

    # Dataloader
    batch_size = min(batch_size, len(dataset))
    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])  # number of workers
    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=batch_size,
                                             num_workers=nw,
                                             shuffle=not opt.rect,
                                             # Shuffle=True unless rectangular training is used
                                             pin_memory=True,
                                             collate_fn=dataset.collate_fn)

    # Testloader
    testloader = torch.utils.data.DataLoader(LoadImagesAndLabels(test_path, imgsz_test, batch_size,
                                                                 hyp=hyp,
                                                                 rect=True,
                                                                 cache_images=opt.cache_images,
                                                                 single_cls=opt.single_cls),
                                             batch_size=batch_size,
                                             num_workers=nw,
                                             pin_memory=True,
                                             collate_fn=dataset.collate_fn)

    initial_rho = opt.rho
    t0 = time.time()
    """====================="""
    """ multi-rho admm train"""
    """====================="""
    if opt.admm:
        opt.notest = True
        # possible weights are '*.pt', 'yolov3-spp.pt', 'yolov3-tiny.pt' etc.
        chkpt = torch.load(weights, map_location=device)

        # load model
        try:
            # chkpt['model'] = {k: v for k, v in chkpt['model'].items() if model.state_dict()[k].numel() == v.numel()}
            model.load_state_dict(chkpt['model'], strict=False)
        except Exception as e:
            s = "%s is not compatible with %s. Specify --weights '' or specify a --cfg compatible with %s. " \
                "See https://github.com/ultralytics/yolov3/issues/657" % (opt.weights, opt.cfg, opt.weights)
            print(e)
            raise KeyError(s) from e

        del chkpt

        # Initialize distributed training
        if device.type != 'cpu' and torch.cuda.device_count() > 1 and torch.distributed.is_available():
            dist.init_process_group(backend='nccl',  # 'distributed backend'
                                    init_method='tcp://127.0.0.1:9999',  # distributed training init method
                                    world_size=1,  # number of nodes for distributed training
                                    rank=0)  # distributed training node rank
            model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=True)
            model.yolo_layers = model.module.yolo_layers  # move yolo layer indices to top level


        # Model parameters
        model.nc = nc  # attach number of classes to model
        model.hyp = hyp  # attach hyperparameters to model
        model.gr = 1.0  # giou loss ratio (obj_loss = 1.0 or giou)
        model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device)  # attach class weights

        # Model EMA
        ema = torch_utils.ModelEMA(model)

        # Start training
        nb = len(dataloader)  # number of batches
        n_burn = max(int(0.7 * nb), 500)  # burn-in iterations, max(0.7 epochs, 500 iterations)
        maps = np.zeros(nc)  # mAP per class
        # torch.autograd.set_detect_anomaly(True)
        results = (0, 0, 0, 0, 0, 0, 0)  # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'

        print('Image sizes %g - %g train, %g test' % (imgsz_min, imgsz_max, imgsz_test))
        print('Using %g dataloader workers' % nw)
        print('Starting training for %g epochs...' % epochs)



        for i in range(opt.rho_num):
            current_rho = initial_rho * 10 ** i
            ADMM = admm.ADMM(model, file_name="./prune_config/" + opt.config_file + ".yaml", rho=current_rho)
            admm.admm_initialization(opt, ADMM=ADMM, model=model)  # intialize Z variable

            for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
                print("current rho: {}".format(current_rho))

                model.train()
                masks = {}
                if opt.masked_retrain and not opt.combine_progressive:
                    print("full acc re-train masking")

                    for name, W in (model.module.named_parameters() if type(
                            model) is torch.nn.parallel.DistributedDataParallel else model.named_parameters()):
                        if name not in ADMM.prune_ratios:
                            continue
                        above_threshold, W = admm.weight_pruning(opt, W, ADMM.prune_ratios[name])
                        W.data = W
                        masks[name] = above_threshold
                elif opt.combine_progressive:
                    print("progressive admm-train/re-train masking")
                    for name, W in (model.module.named_parameters() if type(
                            model) is torch.nn.parallel.DistributedDataParallel else model.named_parameters()):
                        weight = W.cpu().detach().numpy()
                        non_zeros = weight != 0
                        non_zeros = non_zeros.astype(np.float32)
                        zero_mask = torch.from_numpy(non_zeros).cuda()
                        W = torch.from_numpy(weight).cuda()
                        W.data = W
                        masks[name] = zero_mask

                # Update image weights (optional)
                if dataset.image_weights:
                    w = model.class_weights.cpu().numpy() * (1 - maps) ** 2  # class weights
                    image_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w)
                    dataset.indices = random.choices(range(dataset.n), weights=image_weights, k=dataset.n)  # rand weighted idx

                mloss = torch.zeros(4).to(device)  # mean losses
                print(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
                pbar = tqdm(enumerate(dataloader), total=nb)  # progress bar
                for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------

                    ni = i + nb * epoch  # number integrated batches (since train start)
                    imgs = imgs.to(device).float() / 255.0  # uint8 to float32, 0 - 255 to 0.0 - 1.0
                    targets = targets.to(device)

                    # Burn-in
                    if ni <= n_burn:
                        xi = [0, n_burn]  # x interp
                        model.gr = np.interp(ni, xi, [0.0, 1.0])  # giou loss ratio (obj_loss = 1.0 or giou)
                        accumulate = max(1, np.interp(ni, xi, [1, 64 / batch_size]).round())
                        for j, x in enumerate(optimizer.param_groups):
                            # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                            x['lr'] = np.interp(ni, xi, [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
                            x['weight_decay'] = np.interp(ni, xi, [0.0, hyp['weight_decay'] if j == 1 else 0.0])
                            if 'momentum' in x:
                                x['momentum'] = np.interp(ni, xi, [0.9, hyp['momentum']])

                    # Multi-Scale
                    if opt.multi_scale:
                        if ni / accumulate % 1 == 0:  #  adjust img_size (67% - 150%) every 1 batch
                            img_size = random.randrange(grid_min, grid_max + 1) * gs
                        sf = img_size / max(imgs.shape[2:])  # scale factor
                        if sf != 1:
                            ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to 32-multiple)
                            imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)

                    # Forward
                    pred = model(imgs)

                    # Loss
                    loss, loss_items = compute_loss(pred, targets, model)
                    if not torch.isfinite(loss):
                        print('WARNING: non-finite loss, ending training ', loss_items)
                        return results

                    # Backward
                    loss *= batch_size / 64  # scale loss


                    admm.z_u_update(opt, ADMM, model, device, dataloader, optimizer, epoch, imgs, i,
                                        tb_writer)  # update Z and U variables
                    loss, admm_loss, mixed_loss = admm.append_admm_loss(opt, ADMM, model,
                                                                            loss)  # append admm losss

                    if mixed_precision:
                        with amp.scale_loss(mixed_loss, optimizer) as scaled_loss:
                            scaled_loss.backward()
                    else:
                        mixed_loss.backward()

                    if opt.combine_progressive:
                        with torch.no_grad():
                            for name, W in (model.module.named_parameters() if type(
                                    model) is torch.nn.parallel.DistributedDataParallel else model.named_parameters()):
                                if name in masks:
                                    W.grad *= masks[name]

                    # Optimize
                    if ni % accumulate == 0:
                        optimizer.step()
                        optimizer.zero_grad()
                        ema.update(model)

                    # Print
                    mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
                    mem = '%.3gG' % (torch.cuda.memory_cached() / 1E9 if torch.cuda.is_available() else 0)  # (GB)
                    s = ('%10s' * 2 + '%10.3g' * 6) % ('%g/%g' % (epoch, epochs - 1), mem, *mloss, len(targets), img_size)
                    pbar.set_description(s)

                    # Plot
                    # if ni < 1:
                    #     f = 'train_batch%g.jpg' % i  # filename
                        # res = plot_images(images=imgs, targets=targets, paths=paths, fname=f)
                        # if tb_writer:
                        #     tb_writer.add_image(f, res, dataformats='HWC', global_step=epoch)
                        #     # tb_writer.add_graph(model, imgs)  # add model to tensorboard

                    # end batch ------------------------------------------------------------------------------------------------

                # Update scheduler
                if opt.admm:
                    admm.admm_adjust_learning_rate(optimizer, epoch, opt)
                else:
                    scheduler.step()

                # Process epoch results
                ema.update_attr(model)
                final_epoch = epoch + 1 == epochs
                if not opt.notest:  # Calculate mAP  #or final_epoch
                    is_coco = any([x in data for x in ['coco.data', 'coco2014.data', 'coco2017.data']]) and model.nc == 80
                    results, maps = test.test(cfg,
                                              data,
                                              batch_size=batch_size,
                                              imgsz=imgsz_test,
                                              model=ema.ema,
                                              save_json=final_epoch and is_coco,
                                              single_cls=opt.single_cls,
                                              dataloader=testloader,
                                              multi_label=ni > n_burn)

                # Write
                with open(results_file, 'a') as f:
                    f.write(s + '%10.3g' * 7 % results + '\n')  # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
                if len(opt.name) and opt.bucket:
                    os.system('gsutil cp results.txt gs://%s/results/results%s.txt' % (opt.bucket, opt.name))

                # Tensorboard
                if tb_writer:
                    tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss',
                            'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/F1',
                            'val/giou_loss', 'val/obj_loss', 'val/cls_loss']
                    for x, tag in zip(list(mloss[:-1]) + list(results), tags):
                        tb_writer.add_scalar(tag, x, epoch)

                # Update best mAP
                fi = fitness(np.array(results).reshape(1, -1))  # fitness_i = weighted combination of [P, R, mAP, F1]
                if fi > best_fitness:
                    best_fitness = fi

                # end epoch ----------------------------------------------------------------------------------------------------
            # end training

            # admm_adjust_learning_rate ----------------------------------------------------------------------------------------------------
            admm.admm_adjust_learning_rate(optimizer, epoch, opt)
            # end admm_adjust_learning_rate ----------------------------------------------------------------------------------------------------

            print("Saving model.")
            torch.save(
                model.module.state_dict() if type(model) is nn.parallel.DistributedDataParallel else model.state_dict(),
                "./model_pruned/yolov4_{}_{}_{}.pt".format(
                    current_rho, opt.config_file, opt.sparsity_type))

        if not opt.evolve:
            plot_results()  # save as results.png
        print('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
        # dist.destroy_process_group() if torch.cuda.device_count() > 1 else None
        # torch.cuda.empty_cache()
        # return results


    """=============="""
    """masked retrain"""
    """=============="""
    if opt.masked_retrain:
        ADMM = admm.ADMM(model, file_name="./prune_config/" + opt.config_file + ".yaml", rho=initial_rho)
        if not opt.resume:
            # possible weights are '*.pt', 'yolov3-spp.pt', 'yolov3-tiny.pt' etc.
            print("\n>_ Loading file: ./model_pruned/yolov4_{}_{}_{}.pt".format(initial_rho * 10 ** (opt.rho_num - 1), opt.config_file, opt.sparsity_type))
            chkpt = torch.load("./model_pruned/yolov4_{}_{}_{}.pt".format(initial_rho * 10 ** (opt.rho_num - 1), opt.config_file, opt.sparsity_type), map_location=device)
            # chkpt = torch.load(weights, map_location=device)
            # load model
            try:
                # chkpt['model'] = {k: v for k, v in chkpt['model'].items() if model.state_dict()[k].numel() == v.numel()}
                model.load_state_dict(chkpt, strict=False) #['model']

            except KeyError as e:
                # s = "%s is not compatible with %s. Specify --weights '' or specify a --cfg compatible with %s. " \
                #     "See https://github.com/ultralytics/yolov3/issues/657" % (opt.weights, opt.cfg, opt.weights)
                raise KeyError() from e
            #----------------------------------------------hard prune------------------------------------------------
            admm.hard_prune(opt, ADMM, model)
            #----------------------------------------------hard prune------------------------------------------------
        else:
            try:
                chkpt = torch.load(weights, map_location=device)
                chkpt['model'] = {k: v for k, v in chkpt['model'].items() if model.state_dict()[k].numel() == v.numel()}
                model.load_state_dict(chkpt['model'], strict=False)
            except KeyError as e:
                # s = "%s is not compatible with %s. Specify --weights '' or specify a --cfg compatible with %s. " \
                #     "See https://github.com/ultralytics/yolov3/issues/657" % (opt.weights, opt.cfg, opt.weights)
                raise KeyError() from e
            # load optimizer
            if chkpt['optimizer'] is not None:
                optimizer.load_state_dict(chkpt['optimizer'])
                best_fitness = chkpt['best_fitness']

            # load results
            if chkpt.get('training_results') is not None:
                with open(results_file, 'w') as file:
                    file.write(chkpt['training_results'])  # write results.txt

            start_epoch = chkpt['epoch'] + 1
        del chkpt

        # Initialize distributed training
        if device.type != 'cpu' and torch.cuda.device_count() > 1 and torch.distributed.is_available():
            dist.init_process_group(backend='nccl',  # 'distributed backend'
                                    init_method='tcp://127.0.0.1:9999',  # distributed training init method
                                    world_size=1,  # number of nodes for distributed training
                                    rank=0)  # distributed training node rank
            model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=True)
            model.yolo_layers = model.module.yolo_layers  # move yolo layer indices to top level

            # Model parameters
        model.nc = nc  # attach number of classes to model
        model.hyp = hyp  # attach hyperparameters to model
        model.gr = 1.0  # giou loss ratio (obj_loss = 1.0 or giou)
        model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device)  # attach class weights

        # Model EMA
        ema = torch_utils.ModelEMA(model)

        # Start training
        nb = len(dataloader)  # number of batches
        n_burn = max(3 * nb, 500)  # burn-in iterations, max(3 epochs, 500 iterations)
        maps = np.zeros(nc)  # mAP per class
        # torch.autograd.set_detect_anomaly(True)
        results = (0, 0, 0, 0, 0, 0, 0)  # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
        print('Image sizes %g - %g train, %g test' % (imgsz_min, imgsz_max, imgsz_test))
        print('Using %g dataloader workers' % nw)
        print('Starting training for %g epochs...' % epochs)
        for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
            model.train()

            if opt.masked_retrain and not opt.combine_progressive:
                print("full acc re-train masking")
                masks = {}
                for name, W in (model.module.named_parameters() if type(
                        model) is torch.nn.parallel.DistributedDataParallel else model.named_parameters()):
                    if name not in ADMM.prune_ratios:
                        continue
                    above_threshold, W = admm.weight_pruning(opt, W, ADMM.prune_ratios[name])
                    W.data = W
                    masks[name] = above_threshold
            elif opt.combine_progressive:
                print("progressive admm-train/re-train masking")
                masks = {}
                for name, W in (model.module.named_parameters() if type(
                        model) is torch.nn.parallel.DistributedDataParallel else model.named_parameters()):
                    weight = W.cpu().detach().numpy()
                    non_zeros = weight != 0
                    non_zeros = non_zeros.astype(np.float32)
                    zero_mask = torch.from_numpy(non_zeros).cuda()
                    W = torch.from_numpy(weight).cuda()
                    W.data = W
                    masks[name] = zero_mask

            # Update image weights (optional)
            if dataset.image_weights:
                w = model.class_weights.cpu().numpy() * (1 - maps) ** 2  # class weights
                image_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w)
                dataset.indices = random.choices(range(dataset.n), weights=image_weights,
                                                 k=dataset.n)  # rand weighted idx

            mloss = torch.zeros(4).to(device)  # mean losses
            print(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
            pbar = tqdm(enumerate(dataloader), total=nb)  # progress bar
            for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------
                ni = i + nb * epoch  # number integrated batches (since train start)
                imgs = imgs.to(device).float() / 255.0  # uint8 to float32, 0 - 255 to 0.0 - 1.0
                targets = targets.to(device)

                # Burn-in
                if ni <= n_burn:
                    xi = [0, n_burn]  # x interp
                    model.gr = np.interp(ni, xi, [0.0, 1.0])  # giou loss ratio (obj_loss = 1.0 or giou)
                    accumulate = max(1, np.interp(ni, xi, [1, 64 / batch_size]).round())
                    for j, x in enumerate(optimizer.param_groups):
                        # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                        x['lr'] = np.interp(ni, xi, [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
                        x['weight_decay'] = np.interp(ni, xi, [0.0, hyp['weight_decay'] if j == 1 else 0.0])
                        if 'momentum' in x:
                            x['momentum'] = np.interp(ni, xi, [0.9, hyp['momentum']])

                # Multi-Scale
                if opt.multi_scale:
                    if ni / accumulate % 1 == 0:  # adjust img_size (67% - 150%) every 1 batch
                        img_size = random.randrange(grid_min, grid_max + 1) * gs
                    sf = img_size / max(imgs.shape[2:])  # scale factor
                    if sf != 1:
                        ns = [math.ceil(x * sf / gs) * gs for x in
                              imgs.shape[2:]]  # new shape (stretched to 32-multiple)
                        imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)

                # Forward
                pred = model(imgs)

                # Loss
                loss, loss_items = compute_loss(pred, targets, model)
                if not torch.isfinite(loss):
                    print('WARNING: non-finite loss, ending training ', loss_items)
                    return results

                # Backward
                loss *= batch_size / 64  # scale loss
                if mixed_precision:
                    with amp.scale_loss(loss, optimizer) as scaled_loss:
                        scaled_loss.backward()
                else:
                    loss.backward()

                if opt.combine_progressive:
                    with torch.no_grad():
                        for name, W in (model.module.named_parameters() if type(
                                model) is torch.nn.parallel.DistributedDataParallel else model.named_parameters()):
                            if name in masks:
                                W.grad *= masks[name]
                if opt.masked_retrain:
                    with torch.no_grad():
                        for name, W in (model.module.named_parameters() if type(
                                model) is torch.nn.parallel.DistributedDataParallel else model.named_parameters()):
                            if name in masks:
                                W.grad *= masks[name]

                # Optimize
                if ni % accumulate == 0:
                    optimizer.step()
                    optimizer.zero_grad()
                    ema.update(model)

                # Print
                mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_cached() / 1E9 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 + '%10.3g' * 6) % (
                '%g/%g' % (epoch, epochs - 1), mem, *mloss, len(targets), img_size)
                pbar.set_description(s)

                # Plot
                if ni < 1:
                    f = 'train_batch%g.jpg' % i  # filename
                    res = plot_images(images=imgs, targets=targets, paths=paths, fname=f)
                    if tb_writer:
                        tb_writer.add_image(f, res, dataformats='HWC', global_step=epoch)
                        # tb_writer.add_graph(model, imgs)  # add model to tensorboard

                # end batch ------------------------------------------------------------------------------------------------

            # Update scheduler
            scheduler.step()

            # Process epoch results
            ema.update_attr(model)
            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP
                is_coco = any(
                    [x in data for x in ['coco.data', 'coco2014.data', 'coco2017.data']]) and model.nc == 80
                results, maps = test.test(cfg,
                                          data,
                                          batch_size=batch_size,
                                          imgsz=imgsz_test,
                                          model=ema.ema,
                                          save_json=final_epoch and is_coco,
                                          single_cls=opt.single_cls,
                                          dataloader=testloader,
                                          multi_label=ni > n_burn)

            # Write
            with open(results_file, 'a') as f:
                f.write(s + '%10.3g' * 7 % results + '\n')  # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
            if len(opt.name) and opt.bucket:
                os.system('gsutil cp results.txt gs://%s/results/results%s.txt' % (opt.bucket, opt.name))

            # Tensorboard
            if tb_writer:
                tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss',
                        'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/F1',
                        'val/giou_loss', 'val/obj_loss', 'val/cls_loss']
                for x, tag in zip(list(mloss[:-1]) + list(results), tags):
                    tb_writer.add_scalar(tag, x, epoch)

            # Update best mAP
            fi = fitness(np.array(results).reshape(1, -1))  # fitness_i = weighted combination of [P, R, mAP, F1]
            if fi > best_fitness:  #results[2]
                best_fitness = fi  #results[2]
                print("\n>_ Got better accuracy {:.3f}% now...\n".format(results[2]))
                # torch.save(ema.ema.module.state_dict() if hasattr(model, 'module') else ema.ema.state_dict(),
                #            "./model_retrained/yolov4_retrained_acc_{:.3f}_{}rhos_{}_{}.pt".format(results[2], opt.rho_num, opt.config_file, opt.sparsity_type))

            # Save model
            save = (not opt.nosave) or (final_epoch and not opt.evolve)
            if save:
                with open(results_file, 'r') as f:  # create checkpoint
                    chkpt = {'epoch': epoch,
                             'best_fitness': best_fitness,
                             'training_results': f.read(),
                             'model': ema.ema.module.state_dict() if hasattr(model,
                                                                             'module') else ema.ema.state_dict(),
                             'optimizer': None if final_epoch else optimizer.state_dict()}

                # Save last, best and delete
                torch.save(chkpt, last)
                if (best_fitness == fi) and not final_epoch:
                    torch.save(chkpt, best)
                del chkpt

            # end epoch ----------------------------------------------------------------------------------------------------
        # end training

        test_sparsity(model)
        print("Best Acc: {:.4f}".format(results[2]))
        n = opt.name
        if len(n):
            n = '_' + n if not n.isnumeric() else n
            fresults, flast, fbest = 'results%s.txt' % n, wdir + 'last%s.pt' % n, wdir + 'best%s.pt' % n
            for f1, f2 in zip([wdir + 'last.pt', wdir + 'best.pt', 'results.txt'], [flast, fbest, fresults]):
                if os.path.exists(f1):
                    os.rename(f1, f2)  # rename
                    ispt = f2.endswith('.pt')  # is *.pt
                    strip_optimizer(f2) if ispt else None  # strip optimizer
                    os.system('gsutil cp %s gs://%s/weights' % (
                    f2, opt.bucket)) if opt.bucket and ispt else None  # upload

        if not opt.evolve:
            plot_results()  # save as results.png
        print('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
        # dist.destroy_process_group() if torch.cuda.device_count() > 1 else None
        # torch.cuda.empty_cache()
        return results
예제 #7
0
def train(train_loader, criterion, optimizer, epoch, config):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    nat_losses = AverageMeter()
    adv_losses = AverageMeter()
    nat_loss = 0
    adv_loss = 0
    nat_top1 = AverageMeter()
    adv_top1 = AverageMeter()

    # switch to train mode
    config.model.train()

    end = time.time()
    for i, (input, target) in enumerate(train_loader):
        # measure data loading time
        data_time.update(time.time() - end)

        # adjust learning rate
        if config.admm:
            admm.admm_adjust_learning_rate(optimizer, epoch, config)
        else:
            scheduler.step()

        if config.gpu is not None:
            input = input.cuda(config.gpu, non_blocking=True)
        target = target.cuda(config.gpu, non_blocking=True)

        if config.mixup:
            input, target_a, target_b, lam = mixup_data(
                input, target, config.alpha)

        # compute output
        nat_output, adv_output, pert_inputs = config.model(input, target)

        if config.mixup:
            adv_loss = mixup_criterion(criterion, adv_output, target_a,
                                       target_b, lam, config.smooth)
            nat_loss = mixup_criterion(criterion, nat_output, target_a,
                                       target_b, lam, config.smooth)
        else:
            adv_loss = criterion(adv_output, target, smooth=config.smooth)
            nat_loss = criterion(nat_output, target, smooth=config.smooth)
        if config.admm:
            admm.admm_update(config, ADMM, device, train_loader, optimizer,
                             epoch, input, i)  # update Z and U
            adv_loss, admm_loss, mixed_loss = admm.append_admm_loss(
                config, ADMM, adv_loss)  # append admm losss

        # measure accuracy and record loss
        nat_acc1, _ = accuracy(nat_output, target, topk=(1, 5))
        adv_acc1, _ = accuracy(adv_output, target, topk=(1, 5))

        nat_losses.update(nat_loss.item(), input.size(0))
        adv_losses.update(adv_loss.item(), input.size(0))
        adv_top1.update(adv_acc1[0], input.size(0))
        nat_top1.update(nat_acc1[0], input.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
        if config.admm:
            mixed_loss.backward()
        else:
            adv_loss.backward()

        if config.masked_progressive:
            with torch.no_grad():
                for name, W in config.model.named_parameters():
                    if name in config.zero_masks:
                        W.grad *= config.zero_masks[name]

        if config.masked_retrain:
            with torch.no_grad():
                for name, W in config.model.named_parameters():
                    if name in config.masks:
                        W.grad *= config.masks[
                            name]  #returns boolean array called mask when weights are above treshhold

        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if i % config.print_freq == 0:
            print('Epoch: [{0}][{1}/{2}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                  'Nat_Loss {nat_loss.val:.4f} ({nat_loss.avg:.4f})\t'
                  'Nat_Acc@1 {nat_top1.val:.3f} ({nat_top1.avg:.3f})\t'
                  'Adv_Loss {adv_loss.val:.4f} ({adv_loss.avg:.4f})\t'
                  'Adv_Acc@1 {adv_top1.val:.3f} ({adv_top1.avg:.3f})\t'.format(
                      epoch,
                      i,
                      len(train_loader),
                      batch_time=batch_time,
                      data_time=data_time,
                      nat_loss=nat_losses,
                      nat_top1=nat_top1,
                      adv_loss=adv_losses,
                      adv_top1=adv_top1))
예제 #8
0
def run_admm(data_name,data_set,data_end_index,fea_dict,lab_dict,arch_dict,cfg_file,processed_first,next_config_file,ADMM,masks,ep,ck):

    # This function processes the current chunk using the information in cfg_file. In parallel, the next chunk is load into the CPU memory

    # Reading chunk-specific cfg file (first argument-mandatory file)
    if not(os.path.exists(cfg_file)):
         sys.stderr.write('ERROR: The config file %s does not exist!\n'%(cfg_file))
         sys.exit(0)
    else:
        config = configparser.ConfigParser()
        config.read(cfg_file)

    # Setting torch seed
    seed=int(config['exp']['seed'])
    torch.manual_seed(seed)
    random.seed(seed)
    np.random.seed(seed)


    # Reading config parameters
    output_folder=config['exp']['out_folder']
    multi_gpu=strtobool(config['exp']['multi_gpu'])

    to_do=config['exp']['to_do']
    info_file=config['exp']['out_info']

    model=config['model']['model'].split('\n')

    forward_outs=config['forward']['forward_out'].split(',')
    forward_normalize_post=list(map(strtobool,config['forward']['normalize_posteriors'].split(',')))
    forward_count_files=config['forward']['normalize_with_counts_from'].split(',')
    require_decodings=list(map(strtobool,config['forward']['require_decoding'].split(',')))

    use_cuda=strtobool(config['exp']['use_cuda'])
    save_gpumem=strtobool(config['exp']['save_gpumem'])
    is_production=strtobool(config['exp']['production'])

    if to_do=='train':
        batch_size=int(config['batches']['batch_size_train'])

    if to_do=='valid':
        batch_size=int(config['batches']['batch_size_valid'])

    if to_do=='forward':
        batch_size=1


    # ***** Reading the Data********
    if processed_first:  # admm初始化的工作,咱们都在这儿做了吧

        # Reading all the features and labels for this chunk
        shared_list=[]

        p=threading.Thread(target=read_lab_fea, args=(cfg_file,is_production,shared_list,output_folder,))
        p.start()
        p.join()

        data_name=shared_list[0]
        data_end_index=shared_list[1]
        fea_dict=shared_list[2]
        lab_dict=shared_list[3]
        arch_dict=shared_list[4]
        data_set=shared_list[5]



        # converting numpy tensors into pytorch tensors and put them on GPUs if specified
        if not(save_gpumem) and use_cuda:
           data_set=torch.from_numpy(data_set).float().cuda()
        else:
           data_set=torch.from_numpy(data_set).float()




    # Reading all the features and labels for the next chunk
    shared_list=[]
    p=threading.Thread(target=read_lab_fea, args=(next_config_file,is_production,shared_list,output_folder,))
    p.start()

    # Reading model and initialize networks
    inp_out_dict=fea_dict

    [nns,costs]=model_init(inp_out_dict,model,config,arch_dict,use_cuda,multi_gpu,to_do)

    if processed_first:
        ADMM = admm.ADMM(config, nns)

    # optimizers initialization
    optimizers=optimizer_init(nns,config,arch_dict)


    # pre-training and multi-gpu init
    for net in nns.keys():
        pt_file_arch=config[arch_dict[net][0]]['arch_pretrain_file']

        if pt_file_arch!='none':
            checkpoint_load = torch.load(pt_file_arch)
            nns[net].load_state_dict(checkpoint_load['model_par'])
            optimizers[net].load_state_dict(checkpoint_load['optimizer_par'])
            optimizers[net].param_groups[0]['lr']=float(config[arch_dict[net][0]]['arch_lr']) # loading lr of the cfg file for pt

        if multi_gpu:
            nns[net] = torch.nn.DataParallel(nns[net])


    if to_do=='forward':

        post_file={}
        for out_id in range(len(forward_outs)):
            if require_decodings[out_id]:
                out_file=info_file.replace('.info','_'+forward_outs[out_id]+'_to_decode.ark')
            else:
                out_file=info_file.replace('.info','_'+forward_outs[out_id]+'.ark')
            post_file[forward_outs[out_id]]=open_or_fd(out_file,output_folder,'wb')


    if strtobool(config['exp']['retrain']) and processed_first and strtobool(config['exp']['masked_progressive']):
        # make sure small weights are pruned and confirm the acc
        print ("<============masking both weights and gradients for retrain")
        masks = admm.masking(config, ADMM, nns)
        print("<============all masking statistics")
        masks = admm.zero_masking(config, nns)
        print ("<============testing sparsity before retrain")
        admm.test_sparsity(config, nns, ADMM)


    if strtobool(config['exp']['masked_progressive']) and processed_first and strtobool(config['exp']['admm']):
        masks = admm.zero_masking(config, nns)


    # check automatically if the model is sequential
    seq_model=is_sequential_dict(config,arch_dict)

    # ***** Minibatch Processing loop********
    if seq_model or to_do=='forward':
        N_snt=len(data_name)
        N_batches=int(N_snt/batch_size)
    else:
        N_ex_tr=data_set.shape[0]
        N_batches=int(N_ex_tr/batch_size)


    beg_batch=0
    end_batch=batch_size

    snt_index=0
    beg_snt=0


    start_time = time.time()

    # array of sentence lengths
    arr_snt_len=shift(shift(data_end_index, -1,0)-data_end_index,1,0)
    arr_snt_len[0]=data_end_index[0]


    loss_sum=0
    err_sum=0

    inp_dim=data_set.shape[1]
    for i in range(N_batches):

        max_len=0

        if seq_model:

         max_len=int(max(arr_snt_len[snt_index:snt_index+batch_size]))
         inp= torch.zeros(max_len,batch_size,inp_dim).contiguous()


         for k in range(batch_size):

                  snt_len=data_end_index[snt_index]-beg_snt
                  N_zeros=max_len-snt_len

                  # Appending a random number of initial zeros, tge others are at the end.
                  N_zeros_left=random.randint(0,N_zeros)

                  # randomizing could have a regularization effect
                  inp[N_zeros_left:N_zeros_left+snt_len,k,:]=data_set[beg_snt:beg_snt+snt_len,:]

                  beg_snt=data_end_index[snt_index]
                  snt_index=snt_index+1

        else:
            # features and labels for batch i
            if to_do!='forward':
                inp= data_set[beg_batch:end_batch,:].contiguous()
            else:
                snt_len=data_end_index[snt_index]-beg_snt
                inp= data_set[beg_snt:beg_snt+snt_len,:].contiguous()
                beg_snt=data_end_index[snt_index]
                snt_index=snt_index+1

        # use cuda
        if use_cuda:
            inp=inp.cuda()

        if to_do=='train':
            # Forward input, with autograd graph active
            outs_dict=forward_model(fea_dict,lab_dict,arch_dict,model,nns,costs,inp,inp_out_dict,max_len,batch_size,to_do,forward_outs)

            if strtobool(config['exp']['admm']):
                batch_idx = i + ck
                admm.admm_update(config,ADMM,nns, ep,batch_idx)   # update Z and U
                outs_dict['loss_final'],admm_loss,mixed_loss = admm.append_admm_loss(config,ADMM,nns,outs_dict['loss_final']) # append admm losss

            for opt in optimizers.keys():
                optimizers[opt].zero_grad()

            if strtobool(config['exp']['admm']):
                mixed_loss.backward()
            else:
                outs_dict['loss_final'].backward()

            if strtobool(config['exp']['masked_progressive']) and not strtobool(config['exp']['retrain']):
                with torch.no_grad():
                    for net in nns.keys():
                        for name, W in nns[net].named_parameters():
                            if name in masks:
                                W.grad *=masks[name]
                        break

            if strtobool(config['exp']['retrain']):
                with torch.no_grad():
                    for net in nns.keys():
                        for name, W in nns[net].named_parameters():
                            if name in masks:
                                W.grad *=masks[name]
                        break

            # Gradient Clipping (th 0.1)
            #for net in nns.keys():
            #    torch.nn.utils.clip_grad_norm_(nns[net].parameters(), 0.1)


            for opt in optimizers.keys():
                if not(strtobool(config[arch_dict[opt][0]]['arch_freeze'])):
                    optimizers[opt].step()
        else:
            with torch.no_grad(): # Forward input without autograd graph (save memory)
                outs_dict=forward_model(fea_dict,lab_dict,arch_dict,model,nns,costs,inp,inp_out_dict,max_len,batch_size,to_do,forward_outs)


        if to_do=='forward':
            for out_id in range(len(forward_outs)):

                out_save=outs_dict[forward_outs[out_id]].data.cpu().numpy()

                if forward_normalize_post[out_id]:
                    # read the config file
                    counts = load_counts(forward_count_files[out_id])
                    out_save=out_save-np.log(counts/np.sum(counts))

                # save the output
                write_mat(output_folder,post_file[forward_outs[out_id]], out_save, data_name[i])
        else:
            loss_sum=loss_sum+outs_dict['loss_final'].detach()
            err_sum=err_sum+outs_dict['err_final'].detach()

        # update it to the next batch
        beg_batch=end_batch
        end_batch=beg_batch+batch_size

        # Progress bar
        if to_do == 'train':
          status_string="Training | (Batch "+str(i+1)+"/"+str(N_batches)+")"+" | L:" +str(round(loss_sum.cpu().item()/(i+1),3))
          if i==N_batches-1:
             status_string="Training | (Batch "+str(i+1)+"/"+str(N_batches)+")"


        if to_do == 'valid':
          status_string="Validating | (Batch "+str(i+1)+"/"+str(N_batches)+")"
        if to_do == 'forward':
          status_string="Forwarding | (Batch "+str(i+1)+"/"+str(N_batches)+")"

        progress(i, N_batches, status=status_string)

    elapsed_time_chunk=time.time() - start_time

    loss_tot=loss_sum/N_batches
    err_tot=err_sum/N_batches

    # clearing memory
    del inp, outs_dict, data_set

    # save the model
    if to_do=='train':


         for net in nns.keys():
             checkpoint={}
             if multi_gpu:
                checkpoint['model_par']=nns[net].module.state_dict()
             else:
                checkpoint['model_par']=nns[net].state_dict()

             checkpoint['optimizer_par']=optimizers[net].state_dict()

             out_file=info_file.replace('.info','_'+arch_dict[net][0]+'.pkl')
             torch.save(checkpoint, out_file)

    if to_do=='forward':
        for out_name in forward_outs:
            post_file[out_name].close()



    # Write info file
    with open(info_file, "w") as text_file:
        text_file.write("[results]\n")
        if to_do!='forward':
            text_file.write("loss=%s\n" % loss_tot.cpu().numpy())
            text_file.write("err=%s\n" % err_tot.cpu().numpy())
        text_file.write("elapsed_time_chunk=%f\n" % elapsed_time_chunk)

    text_file.close()


    # Getting the data for the next chunk (read in parallel)
    p.join()
    data_name=shared_list[0]
    data_end_index=shared_list[1]
    fea_dict=shared_list[2]
    lab_dict=shared_list[3]
    arch_dict=shared_list[4]
    data_set=shared_list[5]


    # converting numpy tensors into pytorch tensors and put them on GPUs if specified
    if not(save_gpumem) and use_cuda:
       data_set=torch.from_numpy(data_set).float().cuda()
    else:
       data_set=torch.from_numpy(data_set).float()


    return [data_name,data_set,data_end_index,fea_dict,lab_dict,arch_dict,masks,ADMM]
예제 #9
0
def admm_quant_train_by_step(config, audio_processor, model, criterion,
                             optimizer, epoch, model_settings,
                             time_shift_samples, sess, name_list, device):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    ce_losses = AverageMeter()
    mixed_losses = AverageMeter()
    top1 = AverageMeter()

    # switch to train mode
    model.train()
    train_set_size = audio_processor.set_size('training')
    max_step_epoch = train_set_size // config.batch_size
    input_frequency_size = model_settings[
        'dct_coefficient_count']  # sequence length 10
    input_time_size = model_settings['spectrogram_length']  # input_size 25

    end = time.time()
    for i in range(0, train_set_size, config.batch_size):
        input, target = audio_processor.get_data(
            config.batch_size, 0, model_settings, config.background_frequency,
            config.background_volume, time_shift_samples, 'training', sess)

        # measure data loading time
        data_time.update(time.time() - end)

        target = torch.Tensor(target).cuda()
        _, target = target.max(dim=1)
        input = input.reshape((-1, input_time_size, input_frequency_size))
        input = torch.Tensor(input).cuda()
        input_var = torch.autograd.Variable(input)
        target_var = torch.autograd.Variable(target)

        # compute output
        output = model(input_var)
        ce_loss = criterion(output, target_var)
        admm.z_u_update(config, model, device, epoch, i, name_list,
                        print)  # update Z and U variables
        ce_loss, admm_loss, mixed_loss = admm.append_admm_loss(
            model, ce_loss)  # append admm losss

        # compute gradient
        optimizer.zero_grad()
        mixed_loss.backward()
        optimizer.step()

        # measure accuracy and record loss
        prec1 = accuracy(output.data, target)[0]
        ce_losses.update(ce_loss.data, input.size(0))
        mixed_losses.update(mixed_loss.data, input.size(0))
        top1.update(prec1, input.size(0))

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if (i // config.batch_size) % config.print_freq == 0:
            print('Epoch: [{0}][{1}/{2}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                  'Cross Entropy Loss {ce_loss.val:.4f} ({ce_loss.avg:.4f})\t'
                  'Mixed Loss {mixed_loss.val:.4f} ({mixed_loss.avg:.4f})\t'
                  'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
                      epoch,
                      i // config.batch_size,
                      max_step_epoch,
                      batch_time=batch_time,
                      data_time=data_time,
                      ce_loss=ce_losses,
                      mixed_loss=mixed_losses,
                      top1=top1))
예제 #10
0
def prune_train(args, pre_mask, ADMM, train_loader, criterion, optimizer,
                scheduler, epoch):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    idx_loss_dict = {}

    # switch to train mode
    model.train()

    end = time.time()
    for i, (input, target) in enumerate(train_loader):
        target = target.long().cuda()

        # measure data loading time
        data_time.update(time.time() - end)

        # adjust learning rate
        if args.admm:
            admm.admm_adjust_learning_rate(optimizer, epoch, args)
        else:
            scheduler.step()

        input = input.float().cuda()

        if args.mixup:
            input, target_a, target_b, lam = mixup_data(
                input, target, args.alpha)

        # compute output
        output = model(input)

        if args.mixup:
            ce_loss = mixup_criterion(criterion, output, target_a, target_b,
                                      lam, args.smooth)
        else:
            ce_loss = criterion(output, target, smooth=args.smooth)
        mixed_loss = ce_loss

        if args.admm:
            admm.z_u_update(args, ADMM, model, device, train_loader, optimizer,
                            epoch, input, i, writer)  # update Z and U
            ce_loss, admm_loss, mixed_loss = admm.append_admm_loss(
                args, ADMM, model, ce_loss)  # append admm loss
        if args.admm_mask:
            admm.y_k_update(args, ADMM, model, device, train_loader, optimizer,
                            epoch, input, i, writer)  # update Y\K
            ce_loss, admm_loss, mixed_loss = admm.append_mask_loss(
                args, ADMM, model, mixed_loss)

        # measure accuracy and record loss
        acc1, _ = accuracy(output, target, topk=(1, 5))

        losses.update(ce_loss.item(), input.size(0))
        top1.update(acc1[0], input.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()

        if args.admm or args.admm_mask:
            mixed_loss.backward(retain_graph=True)
        else:
            ce_loss.backward()

        if pre_mask:
            with torch.no_grad():
                for name, W in (model.named_parameters()):
                    # shared layers
                    if name in args.fixed_layer:
                        W.grad *= 0
                        continue

                    # pruned weight layers: fix weight for previous task
                    if name in args.pruned_layer and name in pre_mask:
                        W.grad *= pre_mask[name].cuda()

                    # adaptively learn the mask: fix mask for trainable weight part
                    if args.adaptive_mask and 'mask' in name and args.admm:
                        W.grad *= args.mask[name.replace('w_mask',
                                                         'weight')].cuda()

                        #W.grad *= 100
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if i % args.log_interval == 0:
            for param_group in optimizer.param_groups:
                current_lr = param_group['lr']
            print('({0}) lr:[{1:.5f}]  '
                  'Epoch: [{2}][{3}/{4}]\t'
                  'Status: admm-[{5}] retrain-[{6}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                  'Acc@1 {top1.val:.3f}% ({top1.avg:.3f}%)\t'.format(
                      args.optmzr,
                      current_lr,
                      epoch,
                      i,
                      len(train_loader),
                      args.admm,
                      args.masked_retrain,
                      batch_time=data_time,
                      loss=losses,
                      top1=top1))
        if i % 100 == 0:
            idx_loss_dict[i] = losses.avg