def get_logger(self, opts): self.logger = Logger(self.run_dir, self.epoch, self.run_name) self.logger.add_iter_visual_log(self.get_visuals, 1, "test_visuals") self.logger.add_metric_log(self.get_pairs, (("ssim", self.get_metric(ssim)), ("psnr", self.get_metric(psnr)))) return self.logger
def get_logger(self, opts): self.logger = Logger(self.run_dir, self.epoch, self.run_name) return self.logger
dataset_opts = opts['dataset'] train_dataset = get_dataset(**dataset_opts) train_loader = DataLoader(train_dataset, batch_size=opts["batch_size"], num_workers=opts['num_workers'], shuffle=True) train_loader = add_post(train_loader, get_image) # Get checkpoint if opts['last_epoch'] == 'last': checkpoint, start_epoch = get_last_checkpoint(run_dir) else: start_epoch = opts['last_epoch'] checkpoint = path.join(run_dir, "net_{}".format(start_epoch)) if type(start_epoch) is not int: start_epoch = 0 # Get model model = ADNTrain(opts['learn'], opts['loss'], **opts['model']) if opts['use_gpu']: model.cuda() if path.isfile(checkpoint): model.resume(checkpoint) # Get logger logger = Logger(run_dir, start_epoch, args.run_name) logger.add_loss_log(model.get_loss, opts["print_step"], opts['window_size']) logger.add_iter_visual_log(model.get_visuals, opts['visualize_step'], "train_visuals") logger.add_save_log(model.save, opts['save_step']) # Train the model for epoch in range(start_epoch, opts['num_epochs']): for data in logger(train_loader): model.optimize(*data) model.update_lr()