예제 #1
0
def tag_solve_triangular(fgraph, node):
    """
    If a general solve() is applied to the output of a cholesky op, then
    replace it with a triangular solve.

    """
    if isinstance(node.op, Solve):
        if node.op.assume_a == "gen":
            A, b = node.inputs  # result is solution Ax=b
            if A.owner and isinstance(A.owner.op, Cholesky):
                if A.owner.op.lower:
                    return [Solve(assume_a="sym", lower=True)(A, b)]
                else:
                    return [Solve(assume_a="sym", lower=False)(A, b)]
            if (
                A.owner
                and isinstance(A.owner.op, DimShuffle)
                and A.owner.op.new_order == (1, 0)
            ):
                (A_T,) = A.owner.inputs
                if A_T.owner and isinstance(A_T.owner.op, Cholesky):
                    if A_T.owner.op.lower:
                        return [Solve(assume_a="sym", lower=False)(A, b)]
                    else:
                        return [Solve(assume_a="sym", lower=True)(A, b)]
예제 #2
0
파일: ops.py 프로젝트: geofiber/aesara
def tag_solve_triangular(fgraph, node):
    """
    If a general solve() is applied to the output of a cholesky op, then
    replace it with a triangular solve.

    """
    if node.op == solve:
        if node.op.A_structure == "general":
            A, b = node.inputs  # result is solution Ax=b
            if A.owner and isinstance(A.owner.op, type(cholesky)):
                if A.owner.op.lower:
                    return [Solve("lower_triangular")(A, b)]
                else:
                    return [Solve("upper_triangular")(A, b)]
            if (
                A.owner
                and isinstance(A.owner.op, DimShuffle)
                and A.owner.op.new_order == (1, 0)
            ):
                (A_T,) = A.owner.inputs
                if A_T.owner and isinstance(A_T.owner.op, type(cholesky)):
                    if A_T.owner.op.lower:
                        return [Solve("upper_triangular")(A, b)]
                    else:
                        return [Solve("lower_triangular")(A, b)]
예제 #3
0
파일: ops.py 프로젝트: ricardoV94/aesara
def psd_solve_with_chol(fgraph, node):
    if node.op == solve:
        A, b = node.inputs  # result is solution Ax=b
        if is_psd(A):
            L = cholesky(A)
            # N.B. this can be further reduced to a yet-unwritten cho_solve Op
            #     __if__ no other Op makes use of the the L matrix during the
            #     stabilization
            Li_b = Solve("lower_triangular")(L, b)
            x = Solve("upper_triangular")(L.T, Li_b)
            return [x]
예제 #4
0
def psd_solve_with_chol(fgraph, node):
    """
    This utilizes a boolean `psd` tag on matrices.
    """
    if isinstance(node.op, Solve):
        A, b = node.inputs  # result is solution Ax=b
        if getattr(A.tag, "psd", None) is True:
            L = cholesky(A)
            # N.B. this can be further reduced to a yet-unwritten cho_solve Op
            #     __if__ no other Op makes use of the the L matrix during the
            #     stabilization
            Li_b = Solve(assume_a="sym", lower=True)(L, b)
            x = Solve(assume_a="sym", lower=False)(L.T, Li_b)
            return [x]
예제 #5
0
 def verify_solve_grad(self, m, n, A_structure, lower, rng):
     # ensure diagonal elements of A relatively large to avoid numerical
     # precision issues
     A_val = (rng.normal(size=(m, m)) * 0.5 + np.eye(m)).astype(config.floatX)
     if A_structure == "lower_triangular":
         A_val = np.tril(A_val)
     elif A_structure == "upper_triangular":
         A_val = np.triu(A_val)
     if n is None:
         b_val = rng.normal(size=m).astype(config.floatX)
     else:
         b_val = rng.normal(size=(m, n)).astype(config.floatX)
     eps = None
     if config.floatX == "float64":
         eps = 2e-8
     solve_op = Solve(A_structure=A_structure, lower=lower)
     utt.verify_grad(solve_op, [A_val, b_val], 3, rng, eps=eps)
예제 #6
0
    def test_solve_grad(self, m, n, assume_a, lower):
        rng = np.random.default_rng(utt.fetch_seed())

        # Ensure diagonal elements of `A` are relatively large to avoid
        # numerical precision issues
        A_val = (rng.normal(size=(m, m)) * 0.5 + np.eye(m)).astype(config.floatX)

        if n is None:
            b_val = rng.normal(size=m).astype(config.floatX)
        else:
            b_val = rng.normal(size=(m, n)).astype(config.floatX)

        eps = None
        if config.floatX == "float64":
            eps = 2e-8

        solve_op = Solve(assume_a=assume_a, lower=lower)
        utt.verify_grad(solve_op, [A_val, b_val], 3, rng, eps=eps)
예제 #7
0
def MvNormalLogp():
    """Compute the log pdf of a multivariate normal distribution.

    This should be used in MvNormal.logp once Theano#5908 is released.

    Parameters
    ----------
    cov: aet.matrix
        The covariance matrix.
    delta: aet.matrix
        Array of deviations from the mean.
    """
    cov = aet.matrix("cov")
    cov.tag.test_value = floatX(np.eye(3))
    delta = aet.matrix("delta")
    delta.tag.test_value = floatX(np.zeros((2, 3)))

    solve_lower = Solve(A_structure="lower_triangular")
    solve_upper = Solve(A_structure="upper_triangular")
    cholesky = Cholesky(lower=True, on_error="nan")

    n, k = delta.shape
    n, k = f(n), f(k)
    chol_cov = cholesky(cov)
    diag = aet.nlinalg.diag(chol_cov)
    ok = aet.all(diag > 0)

    chol_cov = aet.switch(ok, chol_cov, aet.fill(chol_cov, 1))
    delta_trans = solve_lower(chol_cov, delta.T).T

    result = n * k * aet.log(f(2) * np.pi)
    result += f(2) * n * aet.sum(aet.log(diag))
    result += (delta_trans**f(2)).sum()
    result = f(-0.5) * result
    logp = aet.switch(ok, result, -np.inf)

    def dlogp(inputs, gradients):
        (g_logp, ) = gradients
        cov, delta = inputs

        g_logp.tag.test_value = floatX(1.0)
        n, k = delta.shape

        chol_cov = cholesky(cov)
        diag = aet.nlinalg.diag(chol_cov)
        ok = aet.all(diag > 0)

        chol_cov = aet.switch(ok, chol_cov, aet.fill(chol_cov, 1))
        delta_trans = solve_lower(chol_cov, delta.T).T

        inner = n * aet.eye(k) - aet.dot(delta_trans.T, delta_trans)
        g_cov = solve_upper(chol_cov.T, inner)
        g_cov = solve_upper(chol_cov.T, g_cov.T)

        tau_delta = solve_upper(chol_cov.T, delta_trans.T)
        g_delta = tau_delta.T

        g_cov = aet.switch(ok, g_cov, -np.nan)
        g_delta = aet.switch(ok, g_delta, -np.nan)

        return [-0.5 * g_cov * g_logp, -g_delta * g_logp]

    return OpFromGraph([cov, delta], [logp], grad_overrides=dlogp, inline=True)
예제 #8
0
 def setup_method(self):
     self.op_class = Solve
     self.op = Solve()
     super().setup_method()
예제 #9
0
 def test__init__(self):
     with pytest.raises(ValueError) as excinfo:
         Solve(assume_a="test")
     assert "is not a recognized matrix structure" in str(excinfo.value)
예제 #10
0
파일: util.py 프로젝트: walking-appa/pymc3
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.

import warnings

import aesara.tensor as aet
import numpy as np

from aesara.tensor.slinalg import Solve, cholesky  # pylint: disable=unused-import
from aesara.tensor.var import TensorConstant
from scipy.cluster.vq import kmeans

solve_lower = Solve(A_structure="lower_triangular")
solve_upper = Solve(A_structure="upper_triangular")
solve = Solve(A_structure="general")


def infer_shape(X, n_points=None):
    if n_points is None:
        try:
            n_points = np.int(X.shape[0])
        except TypeError:
            raise TypeError("Cannot infer 'shape', provide as an argument")
    return n_points


def stabilize(K):
    """ adds small diagonal to a covariance matrix """