def start(self): try: # Create the kafka client # assert self.kafka_host is not None # assert self.kafka_port is not None # kafka_host_port = ":".join((self.kafka_host, self.kafka_port)) self.kafka_client = KafkaClient(self.kafka_host_port) # Get the kafka proxy instance. If it does not exist then # create it self.kafka_proxy = get_kafka_proxy() if self.kafka_proxy == None: KafkaProxy(kafka_endpoint=self.kafka_host_port).start() self.kafka_proxy = get_kafka_proxy() # Subscribe the default topic and target_cls self.topic_target_cls_map[self.default_topic] = self.target_cls # Start the queue to handle incoming messages reactor.callLater(0, self._received_message_processing_loop) # Start listening for incoming messages reactor.callLater(0, self.subscribe, self.default_topic, target_cls=self.target_cls) # Setup the singleton instance IKafkaMessagingProxy._kafka_messaging_instance = self except Exception as e: log.exception("Failed-to-start-proxy", e=e)
def __init__(self, consul_endpoint, grafana_url, topic="voltha.heartbeat"): #logging.basicConfig( # format='%(asctime)s:%(name)s:' + # '%(levelname)s:%(process)d:%(message)s', # level=logging.INFO #) self.dash_meta = {} self.timer_resolution = 10 self.timer_duration = 600 self.topic = topic self.dash_template = DashTemplate(grafana_url) self.grafana_url = grafana_url self.kafka_endpoint = None self.consul_endpoint = consul_endpoint retrys = 10 while True: try: self.kafka_endpoint = get_endpoint_from_consul( self.consul_endpoint, 'kafka') break except: log.error("unable-to-communicate-with-consul") self.stop() retrys -= 1 if retrys == 0: log.error("unable-to-communicate-with-consul") self.stop() time.sleep(10) self.on_start_callback = None self._client = KafkaClient(self.kafka_endpoint) self._consumer_list = [] # List of consumers # List of deferred returned from consumers' start() methods self._consumer_d_list = []
def __init__(self, consul_endpoint, topic="voltha.heartbeat", runtime=60): self.topic = topic self.runtime = runtime self.kafka_endpoint = get_endpoint_from_consul(consul_endpoint, 'kafka') self._client = KafkaClient(self.kafka_endpoint) self._consumer_list = [] # List of consumers # List of deferred returned from consumers' start() methods self._consumer_d_list = []
def __init__(self, config): self._topics = config['kafka']['topics'] kafka_client = KafkaClient( Config.get('kafka')['server'] + ':' + str(Config.get('kafka')['port'])) self._producer = Producer(kafka_client)
def ready_client(reactor, netloc, topic): """ Connect to a Kafka broker and wait for the named topic to exist. This assumes that ``auto.create.topics.enable`` is set in the broker configuration. :raises: `KafkaUnavailableError` if unable to connect. """ client = KafkaClient(netloc, reactor=reactor) e = True while e: yield client.load_metadata_for_topics(topic) e = client.metadata_error_for_topic(topic) if e: log.info("Error getting metadata for topic %r: %s (will retry)", topic, e) defer.returnValue(client)
def __init__(self, consul_endpoint, grafana_url, topic="voltha.heartbeat"): #logging.basicConfig( # format='%(asctime)s:%(name)s:' + # '%(levelname)s:%(process)d:%(message)s', # level=logging.INFO #) self.dash_meta = {} self.timer_resolution = 10 self.timer_duration = 600 self.topic = topic self.dash_template = DashTemplate(grafana_url) self.grafana_url = grafana_url self.kafka_endpoint = get_endpoint_from_consul(consul_endpoint, 'kafka') # print('kafka endpoint: ', self.kafka_endpoint) self.on_start_callback = None self._client = KafkaClient(self.kafka_endpoint) self._consumer_list = [] # List of consumers # List of deferred returned from consumers' start() methods self._consumer_d_list = []
def __init__(self, consul_endpoint, kafka_endpoint, grafana_url, topic="voltha.heartbeat"): #logging.basicConfig( # format='%(asctime)s:%(name)s:' + # '%(levelname)s:%(process)d:%(message)s', # level=logging.INFO #) self.dash_meta = {} self.timer_resolution = 10 self.timer_duration = 600 self.topic = topic self.dash_template = DashTemplate(grafana_url) self.grafana_url = grafana_url self.kafka_endpoint = kafka_endpoint self.consul_endpoint = consul_endpoint if kafka_endpoint.startswith('@'): retrys = 10 while True: try: self.kafka_endpoint = get_endpoint_from_consul( self.consul_endpoint, kafka_endpoint[1:]) break except: log.error("unable-to-communicate-with-consul") self.stop() retrys -= 1 if retrys == 0: log.error("unable-to-communicate-with-consul") self.stop() time.sleep(10) self.on_start_callback = None self._client = KafkaClient(self.kafka_endpoint) self._consumer_list = [] # List of consumers # List of deferred returned from consumers' start() methods self._consumer_d_list = []
def __init__(self, config): self._topics = config['kafka']['topics'] kafka_client = KafkaClient( Config.get('kafka')['server'] + ':' + str(Config.get('kafka')['port'])) self._producer = Producer(kafka_client) self._dbpools = {} for database_name in config['databases']: db_config = Config.get('databases')[database_name] self._dbpools[database_name] = ReconnectingConnectionPool( "pymysql", host=db_config['host'], user=db_config['user'], password=db_config['password'], db=db_config['db'], charset=db_config['charset'], autocommit=True, cursorclass=pymysql.cursors.DictCursor)
class ConsumerExample(object): def __init__(self, consul_endpoint, topic="voltha.heartbeat", runtime=60): self.topic = topic self.runtime = runtime self.kafka_endpoint = get_endpoint_from_consul(consul_endpoint, 'kafka') self._client = KafkaClient(self.kafka_endpoint) self._consumer_list = [] # List of consumers # List of deferred returned from consumers' start() methods self._consumer_d_list = [] @inlineCallbacks def start(self): partitions = [] try: while not partitions: yield self._client.load_metadata_for_topics(self.topic) e = self._client.metadata_error_for_topic(self.topic) if e: log.warning('no-metadata-for-topic', error=e, topic=self.topic) else: partitions = self._client.topic_partitions[self.topic] except KafkaUnavailableError: log.error("unable-to-communicate-with-Kafka-brokers") self.stop() def _note_consumer_stopped(result, consumer): log.info('consumer-stopped', consumer=consumer, result=result) for partition in partitions: c = Consumer(self._client, self.topic, partition, self.msg_processor) self._consumer_list.append(c) # log.info('consumer-started', topic=self.topic, partition=partition) d = c.start(OFFSET_LATEST) d.addBoth(_note_consumer_stopped, c) self._consumer_d_list.append(d) # Stop ourselves after we've run the allotted time reactor.callLater(self.runtime, self.stop) def stop(self): log.info("\n") log.info('end-of-execution-stopping-consumers') # Ask each of our consumers to stop. When a consumer fully stops, it # fires the deferred returned from its start() method. We saved all # those deferreds away (above, in start()) in self._consumer_d_list, # so now we'll use a DeferredList to wait for all of them... for consumer in self._consumer_list: consumer.stop() dl = DeferredList(self._consumer_d_list) # Once the consumers are all stopped, then close our client def _stop_client(result): if isinstance(result, Failure): log.error('error', result=result) else: log.info('all-consumers-stopped', client=self._client) self._client.close() return result dl.addBoth(_stop_client) # And once the client is shutdown, stop the reactor def _stop_reactor(result): reactor.stop() return result dl.addBoth(_stop_reactor) def msg_processor(self, consumer, msglist): for msg in msglist: log.info(msg)
class DashDaemon(object): def __init__(self, consul_endpoint, kafka_endpoint, grafana_url, topic="voltha.heartbeat"): #logging.basicConfig( # format='%(asctime)s:%(name)s:' + # '%(levelname)s:%(process)d:%(message)s', # level=logging.INFO #) self.dash_meta = {} self.timer_resolution = 10 self.timer_duration = 600 self.topic = topic self.dash_template = DashTemplate(grafana_url) self.grafana_url = grafana_url self.kafka_endpoint = kafka_endpoint self.consul_endpoint = consul_endpoint if kafka_endpoint.startswith('@'): retrys = 10 while True: try: self.kafka_endpoint = get_endpoint_from_consul( self.consul_endpoint, kafka_endpoint[1:]) break except: log.error("unable-to-communicate-with-consul") self.stop() retrys -= 1 if retrys == 0: log.error("unable-to-communicate-with-consul") self.stop() time.sleep(10) self.on_start_callback = None self._client = KafkaClient(self.kafka_endpoint) self._consumer_list = [] # List of consumers # List of deferred returned from consumers' start() methods self._consumer_d_list = [] def set_on_start_callback(self, on_start_callback): # This function is currently unused, future requirements. self.on_start_callback = on_start_callback return self @inlineCallbacks def start(self): partitions = [] try: while not partitions: yield self._client.load_metadata_for_topics(self.topic) #self._client.load_metadata_for_topics(self.topic) e = self._client.metadata_error_for_topic(self.topic) if e: log.warning('no-metadata-for-topic', error=e, topic=self.topic) else: partitions = self._client.topic_partitions[self.topic] break time.sleep(20) except KafkaUnavailableError: log.error("unable-to-communicate-with-Kafka-brokers") self.stop() def _note_consumer_stopped(result, consumer): log.info('consumer-stopped', consumer=consumer, result=result) for partition in partitions: c = Consumer(self._client, self.topic, partition, self.msg_processor) self._consumer_list.append(c) log.info('consumer-started', topic=self.topic, partition=partition) d = c.start(OFFSET_LATEST) d.addBoth(_note_consumer_stopped, c) self._consumer_d_list.append(d) # Now read the list of existing dashboards from Grafana and create the # dictionary of dashboard timers. If we've crashed there will be # dashboards there. Just add them and if they're no longer valid # they'll be deleted. If they are valid then they'll persist. #print("Starting main loop") try: retrys = 10 while True: r = requests.get(self.grafana_url + "/datasources") if r.status_code == requests.codes.ok: break else: retrys -= 1 if retrys == 0: log.error("unable-to-communicate-with-grafana") self.stop() time.sleep(10) j = r.json() data_source = False for i in j: if i["name"] == "Voltha Stats": data_source = True break if not data_source: r = requests.post(self.grafana_url + "/datasources", data = {"name":"Voltha Stats","type":"graphite", "access":"proxy","url":"http://localhost:81"}) log.info('data-source-added',status=r.status_code, text=r.text) retrys = 10 while True: r = requests.get(self.grafana_url + "/search?") if r.status_code == requests.codes.ok: break else: retrys -= 1 if retrys == 0: log.error("unable-to-communicate-with-grafana") self.stop() time.sleep(10) j = r.json() for i in j: # Look for dashboards that have a title of *olt.[[:hexidgit:]]. # These will be the ones of interest. Others should just be left # alone. #print(i['title']) match = re.search(r'(.*olt)\.([0-9a-zA-Z]+)',i['title']) if match and match.lastindex > 0: #print(match.group(1), match.group(2)) self.dash_meta[match.group(2)] = {} self.dash_meta[match.group(2)]['timer'] = self.timer_duration # 10 min self.dash_meta[match.group(2)]['device'] = match.group(1) self.dash_meta[match.group(2)]['created'] = False self.dash_meta[match.group(2)]['ports'] = {} # TODO: We should really capture all of the chart data # including the rows, panels, and data points being logged. # This is good enough for now though to determine if # there's already a dashboard for a given device. def countdown_processor(): # Called every X (timer_resolution) seconds to count down each of the # dash timers. If a timer reaches 0 the corresponding # dashboard is removed. #log.info("Counting down.") try: for dashboard in self.dash_meta.keys(): #print("Counting down %s." %dashboard) # Issue a log if the counter decrement is somewhat relevant if(self.dash_meta[dashboard]['timer'] % 100 == 0 and \ self.dash_meta[dashboard]['timer'] != self.timer_duration): log.info("counting-down",dashboard=dashboard, timer=self.dash_meta[dashboard]['timer']) self.dash_meta[dashboard]['timer'] -= self.timer_resolution if self.dash_meta[dashboard]['timer'] <= 0: # Delete the dashboard here log.info("FIXME:-Should-delete-the-dashboard-here", dashboard=dashboard) pass except: e = sys.exc_info() log.error("error", error=e) # Start the dashboard countdown processor log.info("starting-countdown-processor") lc = LoopingCall(countdown_processor) lc.start(self.timer_resolution) @inlineCallbacks def template_checker(): try: # Called every so often (timer_resolution seconds because it's # convenient) to check if a template dashboard has been defined # in Grafana. If it has been, replace the built in template # with the one provided r = requests.get(self.grafana_url + "/search?query=template") db = r.json() if len(db) == 1: # Apply the template yield self.dash_template.apply_template(db[0]) elif len(db) != 0: # This is an error, log it. log.warning("More-than-one-template-provided-ignoring") except: e = sys.exc_info() log.error("error", error=e) log.info("starting-template-checker") lc = LoopingCall(template_checker) lc.start(self.timer_resolution) except: e = sys.exc_info() log.error("error", error=e) def stop(self): log.info("\n") log.info('end-of-execution-stopping-consumers') # Ask each of our consumers to stop. When a consumer fully stops, it # fires the deferred returned from its start() method. We saved all # those deferreds away (above, in start()) in self._consumer_d_list, # so now we'll use a DeferredList to wait for all of them... for consumer in self._consumer_list: consumer.stop() dl = DeferredList(self._consumer_d_list) # Once the consumers are all stopped, then close our client def _stop_client(result): if isinstance(result, Failure): log.error('error', result=result) else: log.info('all-consumers-stopped', client=self._client) self._client.close() return result dl.addBoth(_stop_client) # And once the client is shutdown, stop the reactor def _stop_reactor(result): reactor.stop() return result dl.addBoth(_stop_reactor) def check_for_dashboard(self, msg): need_dash = {} done = {} # Extract the ids for all olt(s) in the message and do one of 2 # things. If it exists, reset the meta_data timer for the dashboard and # if it doesn't exist add it to the array of needed dashboards. metrics = json.loads(getattr(msg.message,'value'))['prefixes'] for key in metrics.keys(): match = re.search(r'voltha\.(.*olt)\.([0-9a-zA-Z]+)\.(.*)',key) if match and match.lastindex > 1: if match.group(2) in self.dash_meta and match.group(2) not in done: # Update the delete countdown timer self.dash_meta[match.group(2)]['timer'] = self.timer_duration done[match.group(2)] = True # Issue a log if the reset if somewhat relevant. if self.dash_meta[match.group(2)]['timer'] < \ self.timer_duration - self.timer_resolution: log.info("reset-timer",device=match.group(2)) #print("reset timer for: %s" %match.group(2)) else: # No dahsboard exists, need_dash[key] = metrics[key] return need_dash def create_dashboards(self, createList): dataIds = "ABCDEFGHIJKLMNOP" for dash in createList: #log.info("creating a dashboard for: %s" % self.dash_meta[dash]) # Create one row per "interface" # Create one panel per metric type for the time being it's one # panel for byte stats and one panel for packet stats. newDash = json.loads(self.dash_template.dashBoard) newDash['dashboard']['title'] = self.dash_meta[dash]['device'] + \ '.' + dash # The port is the main grouping attribute for port in self.dash_meta[dash]['ports']: # Add in the rows for the port specified by the template for row in self.dash_template.rows: r = json.loads(self.dash_template.dashRow) r['title'] = re.sub(r'%port%',port, row['title']) p = {} # Add the panels to the row per the template panelId = 1 for panel in self.dash_template.panels: p = json.loads(self.dash_template.dashPanel) p['id'] = panelId panelId += 1 p['title'] = re.sub(r'%port%', port.upper(), panel['title']) t = {} dataId = 0 # Add the targets to the panel for dpoint in sorted(self.dash_meta[dash]['ports'][port]): if dpoint in panel: t['refId'] = dataIds[dataId] db = re.sub(r'%port%',port,panel[dpoint]) db = re.sub(r'%device%', self.dash_meta[dash]['device'],db) db = re.sub(r'%deviceId%', dash,db) t['target'] = db p['targets'].append(t.copy()) dataId += 1 r['panels'].append(p.copy()) newDash['dashboard']['rows'].append(r.copy()) #print("NEW DASHBOARD: ",json.dumps(newDash)) #print(r.json()) r = \ requests.post(self.grafana_url + "/dashboards/db", json=newDash) self.dash_meta[dash]['slug'] = r.json()['slug'] self.dash_meta[dash]['created'] = True log.info("created-dashboard", slug=self.dash_meta[dash]['slug']) def msg_processor(self, consumer, msglist): try: createList = [] for msg in msglist: # Reset the timer for existing dashboards and get back a dict # of of dashboards to create if any. need_dash = self.check_for_dashboard(msg) # Now populate the meta data for all missing dashboards for key in need_dash.keys(): match = re.search(r'voltha\.(.*olt)\.([0-9a-zA-Z]+)\.(.*)',key) if match and match.lastindex > 2: if match.group(2) in self.dash_meta: # The entry will have been created when the first # port in the record was encountered so just # populate the metrics and port info. # TODO: The keys below are the names of the metrics # that are in the Kafka record. This auto-discovery # is fine if all that's needed are raw metrics. If # metrics are "cooked" by a downstream process and # subsequently fed to graphite/carbon without being # re-posted to Kafka, discovery becomes impossible. # In those cases and in cases where finer grain # control of what's displayed is required, a config # file would be necessary. self.dash_meta[match.group(2)]['ports'][match.group(3)] = \ need_dash[key]['metrics'].keys() else: # Not there, create a meta-data record for the # device and add this port. #print("Adding meta data for", match.group(1), # match.group(2)) createList.append(match.group(2)) self.dash_meta[match.group(2)] = {} self.dash_meta[match.group(2)]['timer'] = 600 self.dash_meta[match.group(2)]['device'] = match.group(1) self.dash_meta[match.group(2)]['created'] = False self.dash_meta[match.group(2)]['ports'] = {} #print("Adding port", match.group(3), "to", match.group(1), # match.group(2)) self.dash_meta[match.group(2)]['ports'][match.group(3)] = \ need_dash[key]['metrics'].keys() # Now go ahead and create the dashboards using the meta data that # wwas just populated for them. if len(createList) != 0: # Create any missing dashboards. self.create_dashboards(createList) except: e = sys.exc_info() log.error("error", error=e)
class DashDaemon(object): def __init__(self, consul_endpoint, grafana_url, topic="voltha.heartbeat"): #logging.basicConfig( # format='%(asctime)s:%(name)s:' + # '%(levelname)s:%(process)d:%(message)s', # level=logging.INFO #) self.dash_meta = {} self.timer_resolution = 10 self.timer_duration = 600 self.topic = topic self.dash_template = DashTemplate(grafana_url) self.grafana_url = grafana_url self.kafka_endpoint = get_endpoint_from_consul(consul_endpoint, 'kafka') # print('kafka endpoint: ', self.kafka_endpoint) self.on_start_callback = None self._client = KafkaClient(self.kafka_endpoint) self._consumer_list = [] # List of consumers # List of deferred returned from consumers' start() methods self._consumer_d_list = [] def set_on_start_callback(self, on_start_callback): # This function is currently unused, future requirements. self.on_start_callback = on_start_callback return self @inlineCallbacks def start(self): partitions = [] try: while not partitions: yield self._client.load_metadata_for_topics(self.topic) e = self._client.metadata_error_for_topic(self.topic) if e: log.warning('no-metadata-for-topic', error=e, topic=self.topic) else: partitions = self._client.topic_partitions[self.topic] except KafkaUnavailableError: log.error("unable-to-communicate-with-Kafka-brokers") self.stop() def _note_consumer_stopped(result, consumer): log.info('consumer-stopped', consumer=consumer, result=result) for partition in partitions: c = Consumer(self._client, self.topic, partition, self.msg_processor) self._consumer_list.append(c) log.info('consumer-started', topic=self.topic, partition=partition) d = c.start(OFFSET_LATEST) d.addBoth(_note_consumer_stopped, c) self._consumer_d_list.append(d) # Now read the list of existing dashboards from Grafana and create the # dictionary of dashboard timers. If we've crashed there will be # dashboards there. Just add them and if they're no longer valid # they'll be deleted. If they are valid then they'll persist. #print("Starting main loop") try: r = requests.get(self.grafana_url + "/search?") j = r.json() for i in j: # Look for dashboards that have a title of *olt.[[:hexidgit:]]. # These will be the ones of interest. Others should just be left # alone. #print(i['title']) match = re.search(r'(.*olt)\.([0-9a-zA-Z]+)', i['title']) if match and match.lastindex > 0: #print(match.group(1), match.group(2)) self.dash_meta[match.group(2)] = {} self.dash_meta[match.group( 2)]['timer'] = self.timer_duration # 10 min self.dash_meta[match.group(2)]['device'] = match.group(1) self.dash_meta[match.group(2)]['created'] = False self.dash_meta[match.group(2)]['ports'] = {} # TODO: We should really capture all of the chart data # including the rows, panels, and data points being logged. # This is good enough for now though to determine if # there's already a dashboard for a given device. def countdown_processor(): # Called every X (timer_resolution) seconds to count down each of the # dash timers. If a timer reaches 0 the corresponding # dashboard is removed. #log.info("Counting down.") try: for dashboard in self.dash_meta.keys(): #print("Counting down %s." %dashboard) # Issue a log if the counter decrement is somewhat relevant if(self.dash_meta[dashboard]['timer'] % 100 == 0 and \ self.dash_meta[dashboard]['timer'] != self.timer_duration): log.info("counting-down", dashboard=dashboard, timer=self.dash_meta[dashboard]['timer']) self.dash_meta[dashboard][ 'timer'] -= self.timer_resolution if self.dash_meta[dashboard]['timer'] <= 0: # Delete the dashboard here log.info("FIXME:-Should-delete-the-dashboard-here", dashboard=dashboard) pass except: e = sys.exc_info() log.error("error", error=e) # Start the dashboard countdown processor log.info("starting-countdown-processor") lc = LoopingCall(countdown_processor) lc.start(self.timer_resolution) @inlineCallbacks def template_checker(): try: # Called every so often (timer_resolution seconds because it's # convenient) to check if a template dashboard has been defined # in Grafana. If it has been, replace the built in template # with the one provided r = requests.get(self.grafana_url + "/search?query=template") db = r.json() if len(db) == 1: # Apply the template yield self.dash_template.apply_template(db[0]) elif len(db) != 0: # This is an error, log it. log.warning("More-than-one-template-provided-ignoring") except: e = sys.exc_info() log.error("error", error=e) log.info("starting-template-checker") lc = LoopingCall(template_checker) lc.start(self.timer_resolution) except: e = sys.exc_info() log.error("error", error=e) def stop(self): log.info("\n") log.info('end-of-execution-stopping-consumers') # Ask each of our consumers to stop. When a consumer fully stops, it # fires the deferred returned from its start() method. We saved all # those deferreds away (above, in start()) in self._consumer_d_list, # so now we'll use a DeferredList to wait for all of them... for consumer in self._consumer_list: consumer.stop() dl = DeferredList(self._consumer_d_list) # Once the consumers are all stopped, then close our client def _stop_client(result): if isinstance(result, Failure): log.error('error', result=result) else: log.info('all-consumers-stopped', client=self._client) self._client.close() return result dl.addBoth(_stop_client) # And once the client is shutdown, stop the reactor def _stop_reactor(result): reactor.stop() return result dl.addBoth(_stop_reactor) def check_for_dashboard(self, msg): need_dash = {} done = {} # Extract the ids for all olt(s) in the message and do one of 2 # things. If it exists, reset the meta_data timer for the dashboard and # if it doesn't exist add it to the array of needed dashboards. metrics = json.loads(getattr(msg.message, 'value'))['prefixes'] for key in metrics.keys(): match = re.search(r'voltha\.(.*olt)\.([0-9a-zA-Z]+)\.(.*)', key) if match and match.lastindex > 1: if match.group(2) in self.dash_meta and match.group( 2) not in done: # Update the delete countdown timer self.dash_meta[match.group( 2)]['timer'] = self.timer_duration done[match.group(2)] = True # Issue a log if the reset if somewhat relevant. if self.dash_meta[match.group(2)]['timer'] < \ self.timer_duration - self.timer_resolution: log.info("reset-timer", device=match.group(2)) #print("reset timer for: %s" %match.group(2)) else: # No dahsboard exists, need_dash[key] = metrics[key] return need_dash def create_dashboards(self, createList): dataIds = "ABCDEFGHIJKLMNOP" for dash in createList: #log.info("creating a dashboard for: %s" % self.dash_meta[dash]) # Create one row per "interface" # Create one panel per metric type for the time being it's one # panel for byte stats and one panel for packet stats. newDash = json.loads(self.dash_template.dashBoard) newDash['dashboard']['title'] = self.dash_meta[dash]['device'] + \ '.' + dash # The port is the main grouping attribute for port in self.dash_meta[dash]['ports']: # Add in the rows for the port specified by the template for row in self.dash_template.rows: r = json.loads(self.dash_template.dashRow) r['title'] = re.sub(r'%port%', port, row['title']) p = {} # Add the panels to the row per the template panelId = 1 for panel in self.dash_template.panels: p = json.loads(self.dash_template.dashPanel) p['id'] = panelId panelId += 1 p['title'] = re.sub(r'%port%', port.upper(), panel['title']) t = {} dataId = 0 # Add the targets to the panel for dpoint in sorted( self.dash_meta[dash]['ports'][port]): if dpoint in panel: t['refId'] = dataIds[dataId] db = re.sub(r'%port%', port, panel[dpoint]) db = re.sub(r'%device%', self.dash_meta[dash]['device'], db) db = re.sub(r'%deviceId%', dash, db) t['target'] = db p['targets'].append(t.copy()) dataId += 1 r['panels'].append(p.copy()) newDash['dashboard']['rows'].append(r.copy()) #print("NEW DASHBOARD: ",json.dumps(newDash)) #print(r.json()) r = \ requests.post(self.grafana_url + "/dashboards/db", json=newDash) self.dash_meta[dash]['slug'] = r.json()['slug'] self.dash_meta[dash]['created'] = True log.info("created-dashboard", slug=self.dash_meta[dash]['slug']) def msg_processor(self, consumer, msglist): try: createList = [] for msg in msglist: # Reset the timer for existing dashboards and get back a dict # of of dashboards to create if any. need_dash = self.check_for_dashboard(msg) # Now populate the meta data for all missing dashboards for key in need_dash.keys(): match = re.search(r'voltha\.(.*olt)\.([0-9a-zA-Z]+)\.(.*)', key) if match and match.lastindex > 2: if match.group(2) in self.dash_meta: # The entry will have been created when the first # port in the record was encountered so just # populate the metrics and port info. # TODO: The keys below are the names of the metrics # that are in the Kafka record. This auto-discovery # is fine if all that's needed are raw metrics. If # metrics are "cooked" by a downstream process and # subsequently fed to graphite/carbon without being # re-posted to Kafka, discovery becomes impossible. # In those cases and in cases where finer grain # control of what's displayed is required, a config # file would be necessary. self.dash_meta[match.group(2)]['ports'][match.group(3)] = \ need_dash[key]['metrics'].keys() else: # Not there, create a meta-data record for the # device and add this port. #print("Adding meta data for", match.group(1), # match.group(2)) createList.append(match.group(2)) self.dash_meta[match.group(2)] = {} self.dash_meta[match.group(2)]['timer'] = 600 self.dash_meta[match.group( 2)]['device'] = match.group(1) self.dash_meta[match.group(2)]['created'] = False self.dash_meta[match.group(2)]['ports'] = {} #print("Adding port", match.group(3), "to", match.group(1), # match.group(2)) self.dash_meta[match.group(2)]['ports'][match.group(3)] = \ need_dash[key]['metrics'].keys() # Now go ahead and create the dashboards using the meta data that # wwas just populated for them. if len(createList) != 0: # Create any missing dashboards. self.create_dashboards(createList) except: e = sys.exc_info() log.error("error", error=e)
class IKafkaMessagingProxy(object): _kafka_messaging_instance = None def __init__(self, kafka_host_port, kv_store, default_topic, target_cls): """ Initialize the kafka proxy. This is a singleton (may change to non-singleton if performance is better) :param kafka_host_port: Kafka host and port :param kv_store: Key-Value store :param default_topic: Default topic to subscribe to :param target_cls: target class - method of that class is invoked when a message is received on the default_topic """ # return an exception if the object already exist if IKafkaMessagingProxy._kafka_messaging_instance: raise Exception('Singleton-exist', cls=IKafkaMessagingProxy) log.debug("Initializing-KafkaProxy") self.kafka_host_port = kafka_host_port self.kv_store = kv_store self.default_topic = default_topic self.target_cls = target_cls self.topic_target_cls_map = {} self.topic_consumer_map = {} self.topic_callback_map = {} self.subscribers = {} self.kafka_client = None self.kafka_proxy = None self.transaction_id_deferred_map = {} self.received_msg_queue = DeferredQueue() self.init_time = 0 self.init_received_time = 0 self.init_resp_time = 0 self.init_received_resp_time = 0 self.num_messages = 0 self.total_time = 0 self.num_responses = 0 self.total_time_responses = 0 log.debug("KafkaProxy-initialized") def start(self): try: # Create the kafka client # assert self.kafka_host is not None # assert self.kafka_port is not None # kafka_host_port = ":".join((self.kafka_host, self.kafka_port)) self.kafka_client = KafkaClient(self.kafka_host_port) # Get the kafka proxy instance. If it does not exist then # create it self.kafka_proxy = get_kafka_proxy() if self.kafka_proxy == None: KafkaProxy(kafka_endpoint=self.kafka_host_port).start() self.kafka_proxy = get_kafka_proxy() # Subscribe the default topic and target_cls self.topic_target_cls_map[self.default_topic] = self.target_cls # Start the queue to handle incoming messages reactor.callLater(0, self._received_message_processing_loop) # Start listening for incoming messages reactor.callLater(0, self.subscribe, self.default_topic, target_cls=self.target_cls) # Setup the singleton instance IKafkaMessagingProxy._kafka_messaging_instance = self except Exception as e: log.exception("Failed-to-start-proxy", e=e) def stop(self): """ Invoked to stop the kafka proxy :return: None on success, Exception on failure """ log.debug("Stopping-messaging-proxy ...") try: # Stop all the consumers deferred_list = [] for key, values in self.topic_consumer_map.iteritems(): deferred_list.extend([c.stop() for c in values]) if not deferred_list: d = gatherResults(deferred_list) d.addCallback(lambda result: self.kafka_client.close()) log.debug("Messaging-proxy-stopped.") except Exception as e: log.exception("Exception-when-stopping-messaging-proxy:", e=e) @inlineCallbacks def create_topic(self, topic): yield self._wait_until_topic_is_ready(self.kafka_client, topic) @inlineCallbacks def _wait_until_topic_is_ready(self, client, topic): e = True while e: yield client.load_metadata_for_topics(topic) e = client.metadata_error_for_topic(topic) if e: log.debug("Topic-not-ready-retrying...", topic=topic) def _clear_backoff(self): if self.retries: log.info('reconnected-to-consul', after_retries=self.retries) self.retries = 0 def get_target_cls(self): return self.target_cls def get_default_topic(self): return self.default_topic @inlineCallbacks def _subscribe(self, topic, offset, callback=None, target_cls=None): try: log.debug("subscribing-to-topic-start", topic=topic) yield self._wait_until_topic_is_ready(self.kafka_client, topic) partitions = self.kafka_client.topic_partitions[topic] consumers = [] # First setup the generic callback - all received messages will # go through that queue if topic not in self.topic_consumer_map: log.debug("topic-not-in-consumer-map", topic=topic) consumers = [ Consumer(self.kafka_client, topic, partition, self._enqueue_received_message) for partition in partitions ] self.topic_consumer_map[topic] = consumers log.debug("_subscribe", topic=topic, consumermap=self.topic_consumer_map) if target_cls is not None and callback is None: # Scenario #1 if topic not in self.topic_target_cls_map: self.topic_target_cls_map[topic] = target_cls elif target_cls is None and callback is not None: # Scenario #2 log.debug("custom-callback", topic=topic, callback_map=self.topic_callback_map) if topic not in self.topic_callback_map: self.topic_callback_map[topic] = [callback] else: self.topic_callback_map[topic].extend([callback]) else: log.warn("invalid-parameters") def cb_closed(result): """ Called when a consumer cleanly stops. """ log.debug("Consumers-cleanly-stopped") def eb_failed(failure): """ Called when a consumer fails due to an uncaught exception in the processing callback or a network error on shutdown. In this case we simply log the error. """ log.warn("Consumers-failed", failure=failure) for c in consumers: c.start(offset).addCallbacks(cb_closed, eb_failed) log.debug("subscribed-to-topic", topic=topic) returnValue(True) except Exception as e: log.exception("Exception-during-subscription", e=e) returnValue(False) @inlineCallbacks def subscribe(self, topic, callback=None, target_cls=None, max_retry=3, offset=OFFSET_LATEST): """ Scenario 1: invoked to subscribe to a specific topic with a target_cls to invoke when a message is received on that topic. This handles the case of request/response where this library performs the heavy lifting. In this case the m_callback must to be None Scenario 2: invoked to subscribe to a specific topic with a specific callback to invoke when a message is received on that topic. This handles the case where the caller wants to process the message received itself. In this case the target_cls must to be None :param topic: topic to subscribe to :param callback: Callback to invoke when a message is received on the topic. Either one of callback or target_cls needs can be none :param target_cls: Target class to use when a message is received on the topic. There can only be 1 target_cls per topic. Either one of callback or target_cls needs can be none :param max_retry: the number of retries before reporting failure to subscribe. This caters for scenario where the kafka topic is not ready. :return: True on success, False on failure """ RETRY_BACKOFF = [0.05, 0.1, 0.2, 0.5, 1, 2, 5] def _backoff(msg, retries): wait_time = RETRY_BACKOFF[min(retries, len(RETRY_BACKOFF) - 1)] log.info(msg, retry_in=wait_time) return asleep(wait_time) retry = 0 subscribed = False while not subscribed: subscribed = yield self._subscribe(topic, callback=callback, target_cls=target_cls, offset=offset) if subscribed: returnValue(True) elif retry > max_retry: returnValue(False) else: _backoff("subscription-not-complete", retry) retry += 1 # while not self._subscribe(topic, callback=callback, # target_cls=target_cls): # if retry > max_retry: # return False # else: # _backoff("subscription-not-complete", retry) # retry += 1 # return True def unsubscribe(self, topic): """ Invoked when unsubscribing to a topic :param topic: topic to unsubscibe from :return: None on success or Exception on failure """ log.debug("Unsubscribing-to-topic", topic=topic) def remove_topic(topic): if topic in self.topic_consumer_map: del self.topic_consumer_map[topic] try: if topic in self.topic_consumer_map: consumers = self.topic_consumer_map[topic] d = gatherResults([c.stop() for c in consumers]) d.addCallback(remove_topic, topic) log.debug("Unsubscribed-to-topic.", topic=topic) else: log.debug("Topic-does-not-exist.", topic=topic) except Exception as e: log.exception("Exception-when-stopping-messaging-proxy:", e=e) @inlineCallbacks def _enqueue_received_message(self, reactor, message_list): """ Internal method to continuously queue all received messaged irrespective of topic :param reactor: A requirement by the Twisted Python kafka library :param message_list: Received list of messages :return: None on success, Exception on failure """ try: for m in message_list: log.debug("received-msg", msg=m) yield self.received_msg_queue.put(m) except Exception as e: log.exception("Failed-enqueueing-received-message", e=e) @inlineCallbacks def _received_message_processing_loop(self): """ Internal method to continuously process all received messages one at a time :return: None on success, Exception on failure """ while True: try: message = yield self.received_msg_queue.get() yield self._process_message(message) except Exception as e: log.exception("Failed-dequeueing-received-message", e=e) def _to_string(self, unicode_str): if unicode_str is not None: if type(unicode_str) == unicode: return unicode_str.encode('ascii', 'ignore') else: return unicode_str else: return None def _format_request(self, rpc, to_topic, reply_topic, **kwargs): """ Format a request to send over kafka :param rpc: Requested remote API :param to_topic: Topic to send the request :param reply_topic: Topic to receive the resulting response, if any :param kwargs: Dictionary of key-value pairs to pass as arguments to the remote rpc API. :return: A InterContainerMessage message type on success or None on failure """ try: transaction_id = uuid4().hex request = InterContainerMessage() request_body = InterContainerRequestBody() request.header.id = transaction_id request.header.type = MessageType.Value("REQUEST") request.header.from_topic = reply_topic request.header.to_topic = to_topic response_required = False if reply_topic: request_body.reply_to_topic = reply_topic request_body.response_required = True response_required = True request.header.timestamp = int(round(time.time() * 1000)) request_body.rpc = rpc for a, b in kwargs.iteritems(): arg = Argument() arg.key = a try: arg.value.Pack(b) request_body.args.extend([arg]) except Exception as e: log.exception("Failed-parsing-value", e=e) request.body.Pack(request_body) return request, transaction_id, response_required except Exception as e: log.exception("formatting-request-failed", rpc=rpc, to_topic=to_topic, reply_topic=reply_topic, args=kwargs) return None, None, None def _format_response(self, msg_header, msg_body, status): """ Format a response :param msg_header: The header portion of a received request :param msg_body: The response body :param status: True is this represents a successful response :return: a InterContainerMessage message type """ try: assert isinstance(msg_header, Header) response = InterContainerMessage() response_body = InterContainerResponseBody() response.header.id = msg_header.id response.header.timestamp = int(round(time.time() * 1000)) response.header.type = MessageType.Value("RESPONSE") response.header.from_topic = msg_header.to_topic response.header.to_topic = msg_header.from_topic if msg_body is not None: response_body.result.Pack(msg_body) response_body.success = status response.body.Pack(response_body) return response except Exception as e: log.exception("formatting-response-failed", header=msg_header, body=msg_body, status=status, e=e) return None def _parse_response(self, msg): try: message = InterContainerMessage() message.ParseFromString(msg) resp = InterContainerResponseBody() if message.body.Is(InterContainerResponseBody.DESCRIPTOR): message.body.Unpack(resp) else: log.debug("unsupported-msg", msg_type=type(message.body)) return None log.debug("parsed-response", input=message, output=resp) return resp except Exception as e: log.exception("parsing-response-failed", msg=msg, e=e) return None @inlineCallbacks def _process_message(self, m): """ Default internal method invoked for every batch of messages received from Kafka. """ def _toDict(args): """ Convert a repeatable Argument type into a python dictionary :param args: Repeatable core_adapter.Argument type :return: a python dictionary """ if args is None: return None result = {} for arg in args: assert isinstance(arg, Argument) result[arg.key] = arg.value return result current_time = int(round(time.time() * 1000)) # log.debug("Got Message", message=m) try: val = m.message.value # print m.topic # Go over customized callbacks first if m.topic in self.topic_callback_map: for c in self.topic_callback_map[m.topic]: yield c(val) # Check whether we need to process request/response scenario if m.topic not in self.topic_target_cls_map: return # Process request/response scenario message = InterContainerMessage() message.ParseFromString(val) if message.header.type == MessageType.Value("REQUEST"): # Get the target class for that specific topic targetted_topic = self._to_string(message.header.to_topic) msg_body = InterContainerRequestBody() if message.body.Is(InterContainerRequestBody.DESCRIPTOR): message.body.Unpack(msg_body) else: log.debug("unsupported-msg", msg_type=type(message.body)) return if targetted_topic in self.topic_target_cls_map: if msg_body.args: log.debug("message-body-args-present", body=msg_body) (status, res) = yield getattr( self.topic_target_cls_map[targetted_topic], self._to_string( msg_body.rpc))(**_toDict(msg_body.args)) else: log.debug("message-body-args-absent", body=msg_body, rpc=msg_body.rpc) (status, res) = yield getattr( self.topic_target_cls_map[targetted_topic], self._to_string(msg_body.rpc))() if msg_body.response_required: response = self._format_response( msg_header=message.header, msg_body=res, status=status, ) if response is not None: res_topic = self._to_string( response.header.to_topic) self._send_kafka_message(res_topic, response) log.debug("Response-sent", response=response.body, to_topic=res_topic) elif message.header.type == MessageType.Value("RESPONSE"): trns_id = self._to_string(message.header.id) if trns_id in self.transaction_id_deferred_map: resp = self._parse_response(val) self.transaction_id_deferred_map[trns_id].callback(resp) else: log.error("!!INVALID-TRANSACTION-TYPE!!") except Exception as e: log.exception("Failed-to-process-message", message=m, e=e) @inlineCallbacks def _send_kafka_message(self, topic, msg): try: yield self.kafka_proxy.send_message(topic, msg.SerializeToString()) except Exception, e: log.exception("Failed-sending-message", message=msg, e=e)