def write_uber_command(self): if show_func_seq: print('=== R ===') # rcr - not called pdir = self.ttobj.cvars.val('proc_dir') if os.path.isdir(pdir): sstr = self.make_uber_command() UTIL.write_text_to_file('%s/.orig.cmd.utt' % pdir, sstr)
def write_script(self, fname=''): """write processing script to a file (in the proc_dir) - if fname is set, use it, else generate - set rvars.file_proc and output_proc """ if not self.script: print('** no script to write out') return 1 if fname: name = fname else: name = 'script.ttest' # store (intended) names for calling tool to execute with self.rvars.file_proc = name # store which file we have written to self.rvars.output_proc = 'output.%s' % name # file for command output if self.cvars.verb > 0: print('++ writing script to %s' % name) # if requested, make an original copy self.LV.retdir = SUBJ.goto_proc_dir(self.cvars.proc_dir) if self.cvars.copy_scripts == 'yes': # make an orig copy UTIL.write_text_to_file('.orig.%s'%name, self.script, exe=1) rv = UTIL.write_text_to_file(name, self.script, exe=1) self.LV.retdir = SUBJ.ret_from_proc_dir(self.LV.retdir) return rv
def make_decon_script_old(self): """OLD METHOD: create the deconvolution (3dTfitter) script""" cmd = '# ------------------------------------------------------\n' \ '# perform neuro deconvolution via 3dTfitter\n\n' cmd += "# create response kernel\n" \ "waver -%s -peak 1 -dt %s -inline 1@1 > %s\n\n" % \ (self.kernel, self.tr, self.kfile) if self.aname.type == '1D': prefix = 'detrend.1D' else: prefix = 'detrend%s' % self.aname.view polort = UTIL.get_default_polort(self.tr, self.reps) cmd += '# detrend the input\n' \ '3dDetrend -polort %d -prefix %s %s\n\n' % \ (polort,prefix,self.infiles[0]) if self.maskset: mask = ' -mask %s \\\n' % self.maskset else: mask = '' if self.aname.type == '1D': cmd += '# transpose the detrended dataset\n' \ '1dtranspose detrend.1D > detrend_tr.1D\n\n' dname = 'detrend_tr.1D' else: dname = 'detrend%s' % self.aname.view c2 = '3dTfitter -lsqfit -RHS %s \\\n' \ '%s' \ ' -FALTUNG %s %s \\\n' \ ' 01 0.0\n\n' % (dname,mask,self.kfile,self.prefix) cmd += UTIL.add_line_wrappers(c2) return UTIL.write_text_to_file(self.script, cmd, exe=1)
3dBrickStat -mask $mask -percentile $bot $step 100 -non-zero \\ $pre.abs+tlrc > $pre.abs.1D # have percentile p-values, remove unwanted percentile rankings 1dcat $pre.abs.1D'[1..$(2)]' > $pre.at.1D # transpose and convert t to p 1deval -a $pre.at.1D\\' -expr "fitt_t2p(a,$dof)" > $pre.p.1D # convert p to q (** note: the minimum is not applied, we do not want it) 1deval -a $pre.p.1D -expr "a*$nv/($nv-t)" > $pre.q.1D # put both together in output file 1dcat $pre.p.1D $pre.q.1D > $output # ---------------------------------------- # nuke temporary files (comment out to keep) rm -f $pre.* """ ss += static_script # and write output U.write_text_to_file(outfile, ss) try: os.chmod(outfile, 0o755) except OSError as e: print(e)
def write_uber_command(self): pdir = self.atest.cvars.val('proc_dir') if os.path.isdir(pdir): sstr = self.make_uber_command() UTIL.write_text_to_file('%s/.orig.cmd.uat' % pdir, sstr)
def make_decon_script(self): """create the deconvolution (3dTfitter) script""" nups = '%02d' % self.tr_nup trup = self.tr / self.tr_nup penalty = '012' kernel = self.kernel kfile = self.kfile # todo: include run lengths # maybe call the 3D version if self.aname.type != '1D': return self.make_decon_script_3d() cmd = '# ------------------------------------------------------\n' \ '# perform neuro deconvolution via 3dTfitter\n\n' cmd += '# make and copy files into output directory\n' \ 'set outdir = %s\n' \ 'if ( ! -d $outdir ) mkdir $outdir\n\n' % self.outdir # get a list of (hopefully shortened) file labels llist = UTIL.list_minus_glob_form(self.infiles) llen = len(self.infiles) fix = 0 if len(llist) != llen: fix = 1 else: if llist[0] == self.infiles[0]: fix = 1 if fix: llist = ['%02d.ts' % (ind + 1) for ind in range(llen)] else: llist = ['%02d.%s' % (ind + 1, llist[ind]) for ind in range(llen)] # when copying file in, use 1dtranspose if they are horizontal adata = LD.AfniData(self.infiles[0], verb=self.verb) if not adata: return 1 # rcr - in progress? unused: adata, nt, transp if adata.nrows == 1: nt = adata.ncols * self.tr_nup trstr = '(no transpose on read)' trchr = '' else: nt = adata.nrows * self.tr_nup transp = 1 trstr = '(transpose on read)' trchr = '\\\'' cmd += 'set files = ( %s )\n' \ 'set labels = ( %s )\n\n' \ 'cp -pv $files $outdir\n' \ 'cd $outdir\n\n' \ % (' '.join(self.infiles), ' '.join(llist)) if self.kfile_in: kfile = self.kfile_in else: # generate a response kernel using 3dDeconvolve if kernel == 'GAM': ntk = int(12 / trup + 0.5) elif kernel == 'BLOCK': ntk = int(15 / trup + 0.5) else: print('** only GAM/BLOCK basis functions are allowed now') return 1 if kernel == 'BLOCK': kernel = 'BLOCK(0.1,1)' tmpc = '# create response kernel\n' \ '3dDeconvolve -nodata %d %g -polort -1 \\\n' \ ' -num_stimts 1 -stim_times 1 "1D:0" "%s" \\\n' \ ' -x1D %s -x1D_stop\n\n' % (ntk, trup, kernel, kfile) cmd += UTIL.add_line_wrappers(tmpc) pind = 0 cmd += '# process each input file\n' \ 'foreach findex ( `count -digits 2 1 $#files` )\n' \ ' # no zero-padding in shell index\n' \ ' set ival = `ccalc -i $findex`\n' \ ' set infile = $files[$ival]:t\n' \ ' set label = $labels[$ival]\n\n' \ polort = UTIL.get_default_polort(self.tr, self.reps) olab = 'p%02d.det.$label.1D' % pind cmd += ' # detrend the input %s\n' \ ' 3dDetrend -polort %d -prefix %s $infile%s\n\n' \ % (trstr, polort, olab, trchr) pind += 1 ilab = olab olab = 'p%02d.det.tr.$label.1D' % pind cmd += ' # transpose the detrended dataset\n' \ ' 1dtranspose %s > %s\n\n' % (ilab, olab) pind += 1 ilab = olab olab = 'p%02d.up%s.$label.1D' % (pind, nups) cmd += ' # upsample by factor of %d\n' \ ' 1dUpsample %d %s > %s\n\n' \ % (self.tr_nup, self.tr_nup, ilab, olab) sfile_up = olab # save original detrended upsample label pind += 1 ilab = olab olab = 'p%02d.neuro.up%s.$label.1D' % (pind, nups) tmpc = ' 3dTfitter -RHS %s \\\n' \ ' -FALTUNG %s %s \\\n' \ ' 012 -2 -l2lasso -6\n\n' % (ilab,kfile,olab) cmd += UTIL.add_line_wrappers(tmpc) pind += 1 ilab = olab olab = 'p%02d.neuro.up%s.tr.$label.1D' % (pind, nups) cmd += ' # transpose the neuro signal\n' \ ' 1dtranspose %s > %s\n\n' % (ilab, olab) pind += 1 ilab = olab olab = 'p%02d.reconv.up%s.tr.$label.1D' % (pind, nups) cmd += ' # reconvolve the neuro signal to compare with orig\n'\ ' set nt = `cat %s | wc -l`\n' \ ' waver -FILE %g %s -input %s \\\n' \ ' -numout $nt > %s\n\n' \ % (ilab, trup, kfile, ilab, olab) rfile_up = olab # save reconvolved label cmd += 'end\n\n\n' cmd += 'echo "compare upsample input to reconvolved result via:"\n' \ 'echo "set label = %s"\n' \ 'echo "1dplot -one %s %s"\n\n' \ % (llist[0], sfile_up, rfile_up) return UTIL.write_text_to_file(self.script, cmd, exe=1)