import gym from agent import QAgent env = gym.make('CartPole-v0') agent = QAgent(env) agent.train() t = agent.run() print("Time", t)
#create env env = gym.make(ENV_NAME) print(env.unwrapped.spec.id) #create agent model = QTable(nostates=env.observation_space.n, noactions=env.action_space.n, learning_rate=LEARNING_RATE, discount_factor=DISCOUNT_FACTOR) agent = QAgent(actions=env.action_space.n, expl_max=EXPLORATION_MAX, expl_min=EXPLORATION_MIN, expl_decay=EXPLORATION_DECAY, model=model) #get and parse user args args = Parser.parseargs(defaultTrainIterations=10000, defaultEvalIterations=10) if args.load: agent.load(env, args.loadversion) if args.train != 0: agent.train(env, iterations=args.train, train_s=1, save_i=SAVE_MODEL_EVERY) if args.eval != 0: print("Evaluation results (lower scores are better):") agent.evaluate(env, args.eval) if args.save: agent.save(env, args.saveversion) #close env env.close()