예제 #1
0
    class step:
        enc_activations = InputLayer(
            (None, None, 12),
            name='placeholder for encoder activations (to be attended)')
        prev_gru = InputLayer((None, 15), name='gru prev state (15 units)')

        keys_seq = DenseLayer(enc_activations,
                              30,
                              num_leading_axes=2,
                              nonlinearity=None)

        attention = multihead_attention(
            enc_activations,
            prev_gru,
            key_sequence=keys_seq,
            num_heads=3,
            use_dense_layer=True,
        )

        gru = GRUCell(prev_gru,
                      attention['attn'],
                      name='rnn that reads enc_sequence with attention')

        attn, attn_probs = attention['attn'], attention[
            'probs']  # weights from inside attention
예제 #2
0
def test_recurrence():
    """minimalstic test"""
    sequence = InputLayer((None, None, 3), name='input sequence')
    initial = InputLayer((None, 10), name='gru zero tick')

    # step
    inp = InputLayer((None, 3))
    prev_gru = InputLayer((None, 10))
    gru = GRUCell(prev_gru, inp, name='rnn')

    rec = agentnet.Recurrence(
        input_sequences={inp: sequence},
        state_variables={gru: prev_gru},
        state_init={gru: initial},  # defaults to zeros
        unroll_scan=False)

    weights = get_all_params(rec)

    gru_states = rec[gru]

    run = theano.function(
        [sequence.input_var, initial.input_var],
        get_output(gru_states),
    )

    assert tuple(run(np.random.randn(5, 25, 3),
                     np.random.randn(5, 10)).shape) == (5, 25, 10)
예제 #3
0
        class decoder:
            # decoder previous memory and tokens
            prev_hid = InputLayer((None, hid_size), name='prev hidden state')
            inp = InputLayer((None, ), name="prev phoneme")

            emb = EmbeddingLayer(inp, len(out_voc), emb_size)

            new_hid = GRUCell(prev_hid, emb)

            logits = DenseLayer(new_hid, len(out_voc), nonlinearity=None)

            probs = NonlinearityLayer(logits, nonlinearity=T.nnet.softmax)
            logprobs = NonlinearityLayer(logits,
                                         nonlinearity=T.nnet.logsoftmax)
            out = ProbabilisticResolver(probs, assume_normalized=True)

            state_dict = {
                new_hid: prev_hid,
                # ^^^ this reads "at next step, new_hid will become prev_hid"
                # if you add any more recurrent memory units,
                # please make sure they're here
            }

            init_dict = {
                new_hid: encoder.dec_start
                # ^^^ this reads "before first step, new_hid is set to outputs of dec_start"
                # if you add any more recurrent memory units with non-zero init
                # please make sure they're here
            }

            nonseq_dict = {
                # here you can add anything encoder needs that's gonna be same across time-steps
            }
예제 #4
0
def test_recurrence_substituted():
    """test whether it is possible to use intermediate layers as recurrence inputs"""
    sequence = InputLayer((None, None, 3), name='input sequence')
    sequence_intermediate = InputLayer((None, None, 5),
                                       name='intermediate values sequence')
    initial = InputLayer((None, 10), name='gru zero tick')

    # step
    inp = InputLayer((None, 3), name='input')
    intermediate = DenseLayer(inp, 5, name='intermediate')
    prev_gru = InputLayer((None, 10), name='prev rnn')
    gru = GRUCell(prev_gru, intermediate, name='rnn')

    #regular recurrence, provide inputs, intermediate is computed regularly
    rec = agentnet.Recurrence(
        input_sequences={inp: sequence},
        state_variables={gru: prev_gru},
        state_init={gru: initial},  # defaults to zeros
        unroll_scan=False)

    weights = get_all_params(rec)
    assert intermediate.b in weights

    gru_states = rec[gru]

    run = theano.function(
        [sequence.input_var, initial.input_var],
        get_output(gru_states),
    )

    assert tuple(run(np.random.randn(5, 25, 3),
                     np.random.randn(5, 10)).shape) == (5, 25, 10)

    #recurrence with substituted intermediate values
    rec2 = agentnet.Recurrence(
        input_sequences={intermediate: sequence_intermediate},
        state_variables={gru: prev_gru},
        state_init={gru: initial},  # defaults to zeros
        unroll_scan=False)

    weights2 = get_all_params(rec2)
    assert intermediate.b not in weights2

    gru_states2 = rec2[gru]

    run = theano.function(
        [sequence_intermediate.input_var, initial.input_var],
        get_output(gru_states2),
    )

    assert tuple(run(np.random.randn(5, 25, 5),
                     np.random.randn(5, 10)).shape) == (5, 25, 10)
예제 #5
0
    class step:
        enc_activations = InputLayer(
            (None, None, 12),
            name='placeholder for encoder activations (to be attended)')
        prev_gru = InputLayer((None, 15), name='gru prev state (15 units)')

        attention = AttentionLayer(enc_activations, prev_gru, num_units=16)

        gru = GRUCell(prev_gru,
                      attention['attn'],
                      name='rnn that reads enc_sequence with attention')

        attn_probs = attention['probs']  #weights from inside attention
예제 #6
0
    class step:
        image = InputLayer((None, 3, 24, 24),
                           name='placeholder for 24x24 image (to be attended)')
        prev_gru = InputLayer((None, 15), name='gru prev state (15 units)')

        #get image dimensions
        n_channels, width, height = image.output_shape[1:]

        #flatten all image spots to look like 1d sequence
        image_chunks = reshape(dimshuffle(image, [0, 2, 3, 1]),
                               (-1, width * height, n_channels))

        attention = AttentionLayer(image_chunks, prev_gru, num_units=16)

        gru = GRUCell(prev_gru,
                      attention['attn'],
                      name='rnn that reads enc_sequence with attention')

        #weights from inside attention - reshape back into image
        attn_probs = reshape(attention['probs'], (-1, width, height))
예제 #7
0
    def __init__(
        self,
        controller,
        gru0_size=128,
    ):

        #image observation at current tick goes here
        self.observed_state = InputLayer(controller.dnn_output.output_shape,
                                         name="cnn output")

        prev_gru0 = InputLayer((None, gru0_size), name='prev gru0')

        self.gru0 = GRUCell(prev_state=prev_gru0,
                            input_or_inputs=self.observed_state)

        memory_dict = {self.gru0: prev_gru0}

        #q_eval
        q_eval = DenseLayer(self.gru0,
                            num_units=controller.n_goals,
                            nonlinearity=lasagne.nonlinearities.linear,
                            name="QEvaluator")

        #resolver
        self.resolver = EpsilonGreedyResolver(q_eval, name="resolver")

        #all together
        self.agent = Agent(self.observed_state, memory_dict, q_eval,
                           [self.resolver, q_eval])

        self.controller = controller
        self.observation_shape = controller.dnn_output.output_shape
        self.n_goals = controller.n_goals
        self.period = controller.metacontroller_period
        self.applier_fun = self.agent.get_react_function()

        self.weights = lasagne.layers.get_all_params(self.resolver,
                                                     trainable=True)
예제 #8
0
def test_memory(
    game_title='SpaceInvaders-v0',
    n_parallel_games=3,
    replay_seq_len=2,
):
    """
    :param game_title: name of atari game in Gym
    :param n_parallel_games: how many games we run in parallel
    :param replay_seq_len: how long is one replay session from a batch
    """

    atari = gym.make(game_title)
    atari.reset()

    # Game Parameters
    n_actions = atari.action_space.n
    observation_shape = (None, ) + atari.observation_space.shape
    action_names = atari.get_action_meanings()
    del atari
    # ##### Agent observations

    # image observation at current tick goes here
    observation_layer = InputLayer(observation_shape, name="images input")

    # reshape to [batch, color, x, y] to allow for convolutional layers to work correctly
    observation_reshape = DimshuffleLayer(observation_layer, (0, 3, 1, 2))

    # Agent memory states

    memory_dict = OrderedDict([])

    ###Window
    window_size = 3

    # prev state input
    prev_window = InputLayer(
        (None, window_size) + tuple(observation_reshape.output_shape[1:]),
        name="previous window state")

    # our window
    window = WindowAugmentation(observation_reshape,
                                prev_window,
                                name="new window state")

    # pixel-wise maximum over the temporal window (to avoid flickering)
    window_max = ExpressionLayer(window,
                                 lambda a: a.max(axis=1),
                                 output_shape=(None, ) +
                                 window.output_shape[2:])

    memory_dict[window] = prev_window

    ###Stack
    #prev stack
    stack_w, stack_h = 4, 5
    stack_inputs = DenseLayer(observation_reshape, stack_w, name="prev_stack")
    stack_controls = DenseLayer(observation_reshape,
                                3,
                                nonlinearity=lasagne.nonlinearities.softmax,
                                name="prev_stack")
    prev_stack = InputLayer((None, stack_h, stack_w),
                            name="previous stack state")
    stack = StackAugmentation(stack_inputs, prev_stack, stack_controls)
    memory_dict[stack] = prev_stack

    stack_top = lasagne.layers.SliceLayer(stack, 0, 1)

    ###RNN preset

    prev_rnn = InputLayer((None, 16), name="previous RNN state")
    new_rnn = RNNCell(prev_rnn, observation_reshape)
    memory_dict[new_rnn] = prev_rnn

    ###GRU preset
    prev_gru = InputLayer((None, 16), name="previous GRUcell state")
    new_gru = GRUCell(prev_gru, observation_reshape)
    memory_dict[new_gru] = prev_gru

    ###GRUmemorylayer
    prev_gru1 = InputLayer((None, 15), name="previous GRUcell state")
    new_gru1 = GRUMemoryLayer(15, observation_reshape, prev_gru1)
    memory_dict[new_gru1] = prev_gru1

    #LSTM with peepholes
    prev_lstm0_cell = InputLayer(
        (None, 13), name="previous LSTMCell hidden state [with peepholes]")

    prev_lstm0_out = InputLayer(
        (None, 13), name="previous LSTMCell output state [with peepholes]")

    new_lstm0_cell, new_lstm0_out = LSTMCell(
        prev_lstm0_cell,
        prev_lstm0_out,
        input_or_inputs=observation_reshape,
        peepholes=True,
        name="newLSTM1 [with peepholes]")

    memory_dict[new_lstm0_cell] = prev_lstm0_cell
    memory_dict[new_lstm0_out] = prev_lstm0_out

    #LSTM without peepholes
    prev_lstm1_cell = InputLayer(
        (None, 14), name="previous LSTMCell hidden state [no peepholes]")

    prev_lstm1_out = InputLayer(
        (None, 14), name="previous LSTMCell output state [no peepholes]")

    new_lstm1_cell, new_lstm1_out = LSTMCell(
        prev_lstm1_cell,
        prev_lstm1_out,
        input_or_inputs=observation_reshape,
        peepholes=False,
        name="newLSTM1 [no peepholes]")

    memory_dict[new_lstm1_cell] = prev_lstm1_cell
    memory_dict[new_lstm1_out] = prev_lstm1_out

    ##concat everything

    for i in [flatten(window_max), stack_top, new_rnn, new_gru, new_gru1]:
        print(i.output_shape)
    all_memory = concat([
        flatten(window_max),
        stack_top,
        new_rnn,
        new_gru,
        new_gru1,
        new_lstm0_out,
        new_lstm1_out,
    ])

    # ##### Neural network body
    # you may use any other lasagne layers, including convolutions, batch_norms, maxout, etc

    # a simple lasagne network (try replacing with any other lasagne network and see what works best)
    nn = DenseLayer(all_memory, num_units=50, name='dense0')

    # Agent policy and action picking
    q_eval = DenseLayer(nn,
                        num_units=n_actions,
                        nonlinearity=lasagne.nonlinearities.linear,
                        name="QEvaluator")

    # resolver
    resolver = EpsilonGreedyResolver(q_eval, epsilon=0.1, name="resolver")

    # agent
    agent = Agent(observation_layer, memory_dict, q_eval, resolver)

    # Since it's a single lasagne network, one can get it's weights, output, etc
    weights = lasagne.layers.get_all_params(resolver, trainable=True)

    # Agent step function
    print('compiling react')
    applier_fun = agent.get_react_function()

    # a nice pythonic interface
    def step(observation, prev_memories='zeros', batch_size=n_parallel_games):
        """ returns actions and new states given observation and prev state
        Prev state in default setup should be [prev window,]"""
        # default to zeros
        if prev_memories == 'zeros':
            prev_memories = [
                np.zeros((batch_size, ) + tuple(mem.output_shape[1:]),
                         dtype='float32') for mem in agent.agent_states
            ]
        res = applier_fun(np.array(observation), *prev_memories)
        action = res[0]
        memories = res[1:]
        return action, memories

    # # Create and manage a pool of atari sessions to play with

    pool = GamePool(game_title, n_parallel_games)

    observation_log, action_log, reward_log, _, _, _ = pool.interact(step, 50)

    print(np.array(action_names)[np.array(action_log)[:3, :5]])

    # # experience replay pool
    # Create an environment with all default parameters
    env = SessionPoolEnvironment(observations=observation_layer,
                                 actions=resolver,
                                 agent_memories=agent.agent_states)

    def update_pool(env, pool, n_steps=100):
        """ a function that creates new sessions and ads them into the pool
        throwing the old ones away entirely for simplicity"""

        preceding_memory_states = list(pool.prev_memory_states)

        # get interaction sessions
        observation_tensor, action_tensor, reward_tensor, _, is_alive_tensor, _ = pool.interact(
            step, n_steps=n_steps)

        # load them into experience replay environment
        env.load_sessions(observation_tensor, action_tensor, reward_tensor,
                          is_alive_tensor, preceding_memory_states)

    # load first  sessions
    update_pool(env, pool, replay_seq_len)

    # A more sophisticated way of training is to store a large pool of sessions and train on random batches of them.
    # ### Training via experience replay

    # get agent's Q-values obtained via experience replay
    _env_states, _observations, _memories, _imagined_actions, q_values_sequence = agent.get_sessions(
        env,
        session_length=replay_seq_len,
        batch_size=env.batch_size,
        optimize_experience_replay=True,
    )

    # Evaluating loss function

    scaled_reward_seq = env.rewards
    # For SpaceInvaders, however, not scaling rewards is at least working

    elwise_mse_loss = qlearning.get_elementwise_objective(
        q_values_sequence,
        env.actions[0],
        scaled_reward_seq,
        env.is_alive,
        gamma_or_gammas=0.99,
    )

    # compute mean over "alive" fragments
    mse_loss = elwise_mse_loss.sum() / env.is_alive.sum()

    # regularize network weights
    reg_l2 = regularize_network_params(resolver, l2) * 10**-4

    loss = mse_loss + reg_l2

    # Compute weight updates
    updates = lasagne.updates.adadelta(loss, weights, learning_rate=0.01)

    # mean session reward
    mean_session_reward = env.rewards.sum(axis=1).mean()

    # # Compile train and evaluation functions

    print('compiling')
    train_fun = theano.function([], [loss, mean_session_reward],
                                updates=updates)
    evaluation_fun = theano.function(
        [], [loss, mse_loss, reg_l2, mean_session_reward])
    print("I've compiled!")

    # # Training loop

    for epoch_counter in range(10):
        update_pool(env, pool, replay_seq_len)
        loss, avg_reward = train_fun()
        full_loss, q_loss, l2_penalty, avg_reward_current = evaluation_fun()

        print("epoch %i,loss %.5f, rewards: %.5f " %
              (epoch_counter, full_loss, avg_reward_current))
        print("rec %.3f reg %.3f" % (q_loss, l2_penalty))
예제 #9
0
def test_memory_cells(batch_size=3, seq_len=50, input_dim=8, n_hidden=16):
    # lasagne way
    l_in = InputLayer(
        (None, seq_len, input_dim),
        input_var=theano.shared(
            np.random.normal(size=[batch_size, seq_len, input_dim])),
        name='input seq')

    l_lstm0 = LSTMLayer(l_in, n_hidden, name='lstm')
    l_gru0 = GRULayer(l_in, n_hidden, name='gru')

    f_predict0 = theano.function([], get_output([l_lstm0, l_gru0]))

    # agentnet way
    s_in = InputLayer((None, input_dim), name='in')

    s_prev_cell = InputLayer((None, n_hidden), name='cell')
    s_prev_hid = InputLayer((None, n_hidden), name='hid')
    s_lstm_cell, s_lstm_hid = LSTMCell(s_prev_cell,
                                       s_prev_hid,
                                       s_in,
                                       name='lstm')

    s_prev_gru = InputLayer((None, n_hidden), name='hid')
    s_gru = GRUCell(s_prev_gru, s_in, name='gru')

    rec = Recurrence(state_variables=OrderedDict({
        s_lstm_cell: s_prev_cell,
        s_lstm_hid: s_prev_hid,
        s_gru: s_prev_gru
    }),
                     input_sequences={s_in: l_in},
                     unroll_scan=False)

    state_seqs, _ = rec.get_sequence_layers()

    l_lstm1 = state_seqs[s_lstm_hid]
    l_gru1 = state_seqs[s_gru]

    f_predict1 = theano.function([], get_output([l_lstm1, l_gru1]))

    # lstm param transfer
    old_params = sorted(get_all_params(l_lstm0, trainable=True),
                        key=lambda p: p.name)
    new_params = sorted(get_all_params(s_lstm_hid, trainable=True),
                        key=lambda p: p.name)

    for old, new in zip(old_params, new_params):
        print old.name, '<-', new.name
        assert tuple(old.shape.eval()) == tuple(new.shape.eval())
        old.set_value(new.get_value())

    # gru param transfer
    old_params = sorted(get_all_params(l_gru0, trainable=True),
                        key=lambda p: p.name)
    new_params = sorted(get_all_params(s_gru, trainable=True),
                        key=lambda p: p.name)

    for old, new in zip(old_params, new_params):
        print old.name, '<-', new.name
        assert tuple(old.shape.eval()) == tuple(new.shape.eval())
        old.set_value(new.get_value())

    lstm0_out, gru0_out = f_predict0()
    lstm1_out, gru1_out = f_predict1()

    assert np.allclose(lstm0_out, lstm1_out)
    assert np.allclose(gru0_out, gru1_out)