def test_agent_actions(): print() pricing_agents = [ TaskPricingDqnAgent(0, create_lstm_dqn_network(9, 5)), TaskPricingDdqnAgent(1, create_lstm_dqn_network(9, 5)), TaskPricingDuelingDqnAgent(2, create_lstm_dueling_dqn_network(9, 5)), TaskPricingCategoricalDqnAgent( 3, create_lstm_categorical_dqn_network(9, 5)), TaskPricingDdpgAgent(4, create_lstm_actor_network(9), create_lstm_critic_network(9)), TaskPricingTD3Agent(5, create_lstm_actor_network(9), create_lstm_critic_network(9), create_lstm_critic_network(9)) ] weighting_agents = [ ResourceWeightingDqnAgent(0, create_lstm_dqn_network(16, 5)), ResourceWeightingDdqnAgent(1, create_lstm_dqn_network(16, 5)), ResourceWeightingDuelingDqnAgent( 2, create_lstm_dueling_dqn_network(16, 5)), ResourceWeightingCategoricalDqnAgent( 3, create_lstm_categorical_dqn_network(16, 5)), ResourceWeightingDdpgAgent(4, create_lstm_actor_network(16), create_lstm_critic_network(16)), ResourceWeightingTD3Agent(5, create_lstm_actor_network(16), create_lstm_critic_network(16), create_lstm_critic_network(16)) ] env, state = OnlineFlexibleResourceAllocationEnv.load_env( 'agent/settings/actions.env') for agent in pricing_agents: actions = { server: agent.bid(state.auction_task, tasks, server, state.time_step) for server, tasks in state.server_tasks.items() } # noinspection PyUnboundLocalVariable print( f'Actions: {{{", ".join([f"{server.name}: {action}" for server, action in actions.items()])}}}' ) state, rewards, done, _ = env.step(actions) for agent in weighting_agents: actions = { server: agent.weight(tasks, server, state.time_step) for server, tasks in state.server_tasks.items() } print( f'Actions: {{{", ".join([f"{server.name}: {list(task_action.values())}" for server, task_action in actions.items()])}}}' ) state, rewards, done, _ = env.step(actions)
def test_agent_evaluation(): print() setup_tensorboard('training/results/tmp/', 'agent_eval') env = OnlineFlexibleResourceAllocationEnv('training/settings/basic.env') eval_envs = generate_eval_envs(env, 5, 'training/settings/tmp/', overwrite=True) assert len(os.listdir('training/settings/tmp/')) == 5 total_auctions, total_resource_allocation = 0, 0 for eval_env in eval_envs: env, state = OnlineFlexibleResourceAllocationEnv.load_env(eval_env) total_auctions += len(env._unallocated_tasks) + ( 1 if state.auction_task is not None else 0) total_resource_allocation += env._total_time_steps + 1 pricing_agents = [ TaskPricingDqnAgent(0, create_bidirectional_dqn_network(9, 5)), TaskPricingDdpgAgent(1, create_lstm_actor_network(9), create_lstm_critic_network(9)) ] weighting_agents = [ ResourceWeightingDqnAgent(2, create_bidirectional_dqn_network(16, 5)), ResourceWeightingDdpgAgent(3, create_lstm_actor_network(16), create_lstm_critic_network(16)), ] results = eval_agent(eval_envs, 0, pricing_agents, weighting_agents) print( f'Results - Total prices: {results.total_prices}, Number of completed tasks: {results.num_completed_tasks}, ' f'failed tasks: {results.num_failed_tasks}, winning prices: {results.winning_prices}, ' f'Number of auctions: {results.num_auctions}, resource allocations: {results.num_resource_allocations}' ) assert 0 < results.num_completed_tasks assert 0 < results.num_failed_tasks assert results.num_auctions == total_auctions assert results.num_resource_allocations == total_resource_allocation
def test_resource_allocation_training(): print() setup_tensorboard('/tmp/results/', 'resource_allocation_training') # List of agents agents: List[ResourceWeightingRLAgent] = [ ResourceWeightingDqnAgent(0, create_lstm_dqn_network(16, 10), batch_size=4, save_folder='tmp'), ResourceWeightingDdqnAgent(1, create_lstm_dqn_network(16, 10), batch_size=4, save_folder='tmp'), ResourceWeightingDuelingDqnAgent(2, create_lstm_dueling_dqn_network( 16, 10), batch_size=4, save_folder='tmp'), ResourceWeightingCategoricalDqnAgent( 3, create_lstm_categorical_dqn_network(16, 10), batch_size=2, save_folder='tmp'), ResourceWeightingDdpgAgent(4, create_lstm_actor_network(16), create_lstm_critic_network(16), batch_size=4, save_folder='tmp'), ResourceWeightingTD3Agent(5, create_lstm_actor_network(16), create_lstm_critic_network(16), create_lstm_critic_network(16), batch_size=4, save_folder='tmp'), ] # Load the environment env, state = OnlineFlexibleResourceAllocationEnv.load_env( 'training/settings/resource_allocation.env') # Servers and tasks server = list(state.server_tasks.keys())[0] task_1, task_2, task_3, task_4 = list(state.server_tasks[server]) # Actions actions = {server: {task_1: 1.0, task_2: 3.0, task_3: 0.0, task_4: 5.0}} # Environment step next_state, rewards, done, _ = env.step(actions) # Resource state resource_state = ResourceAllocationState(state.server_tasks[server], server, state.time_step) # Next server and resource state next_resource_state = ResourceAllocationState( next_state.server_tasks[server], server, next_state.time_step) for agent in agents: agent.resource_allocation_obs(resource_state, actions[server], next_resource_state, rewards[server]) agent.train() agent = ResourceWeightingSeq2SeqAgent(6, create_seq2seq_actor_network(), create_seq2seq_critic_network(), create_seq2seq_critic_network(), batch_size=2, save_folder='tmp') agent.resource_allocation_obs(resource_state, actions[server], next_resource_state, rewards[server]) agent.resource_allocation_obs(resource_state, actions[server], next_resource_state, rewards[server]) agent.train() print( f'Rewards: {[trajectory[3] for trajectory in agents[0].replay_buffer]}' )
def test_epsilon_policy(): print() # Tests the epsilon policy by getting agent actions that should update the agent epsilon over time env, state = OnlineFlexibleResourceAllocationEnv.load_env( 'agent/settings/actions.env') # Number of epsilon steps for the agents epsilon_steps = 25 # Agents that have a custom _get_action function pricing_agents = [ TaskPricingDqnAgent(0, create_lstm_dqn_network(9, 5), epsilon_steps=epsilon_steps, epsilon_update_freq=1, epsilon_log_freq=1), TaskPricingCategoricalDqnAgent(1, create_lstm_categorical_dqn_network( 9, 5), epsilon_steps=epsilon_steps, epsilon_update_freq=1, epsilon_log_freq=1), TaskPricingDdpgAgent(2, create_lstm_actor_network(9), create_lstm_critic_network(9), epsilon_steps=epsilon_steps, epsilon_update_freq=1, epsilon_log_freq=1) ] weighting_agents = [ ResourceWeightingDqnAgent(0, create_lstm_dqn_network(16, 5), epsilon_steps=epsilon_steps, epsilon_update_freq=1, epsilon_log_freq=1), ResourceWeightingCategoricalDqnAgent( 1, create_lstm_categorical_dqn_network(16, 5), epsilon_steps=epsilon_steps, epsilon_update_freq=1, epsilon_log_freq=1), ResourceWeightingDdpgAgent(2, create_lstm_actor_network(16), create_lstm_critic_network(16), epsilon_steps=epsilon_steps, epsilon_update_freq=1, epsilon_log_freq=1) ] # Generate a tf writer and generate actions that will update the epsilon values for both agents writer = tf.summary.create_file_writer(f'agent/tmp/testing_epsilon') num_steps = 10 with writer.as_default(): for _ in range(num_steps): for agent in pricing_agents: actions = { server: agent.bid(state.auction_task, tasks, server, state.time_step, training=True) for server, tasks in state.server_tasks.items() } state, rewards, done, _ = env.step(actions) for _ in range(num_steps): for agent in weighting_agents: actions = { server: agent.weight(tasks, server, state.time_step, training=True) for server, tasks in state.server_tasks.items() } state, rewards, done, _ = env.step(actions) # Check that the resulting total action are valid for agent in pricing_agents: print(f'Agent: {agent.name}') assert agent.total_actions == num_steps * 3 for agent in weighting_agents: print(f'Agent: {agent.name}') assert agent.total_actions == num_steps * 3 # Check that the agent epsilon are correct assert pricing_agents[0].final_epsilon == pricing_agents[ 0].epsilon and pricing_agents[1].final_epsilon == pricing_agents[ 1].epsilon assert weighting_agents[0].final_epsilon == weighting_agents[ 0].epsilon and weighting_agents[1].final_epsilon == weighting_agents[ 1].epsilon assert pricing_agents[2].final_epsilon_std == pricing_agents[2].epsilon_std assert weighting_agents[2].final_epsilon_std == weighting_agents[ 2].epsilon_std
def test_ddpg_actions(): print() # Check that DDPG actions are valid env, state = OnlineFlexibleResourceAllocationEnv.load_env( 'agent/settings/actions.env') repeat, max_repeat = 0, 10 auction_actions = {} while repeat <= max_repeat: pricing_agent = TaskPricingDdpgAgent(3, create_lstm_actor_network(9), create_lstm_critic_network(9), initial_epsilon=0.5) auction_actions = { server: pricing_agent.bid(state.auction_task, tasks, server, state.time_step) for server, tasks in state.server_tasks.items() } print(f'Greedy actions: {list(auction_actions.values())}') if any(0 < action for server, action in auction_actions.items()): auction_actions = { server: pricing_agent.bid(state.auction_task, tasks, server, state.time_step, training=True) for server, tasks in state.server_tasks.items() } print( f'Epsilon Greedy actions: {list(auction_actions.values())}\n') if any(0 < action for server, action in auction_actions.items()): break elif repeat == max_repeat: raise Exception() else: repeat += 1 states, rewards, dones, _ = env.step(auction_actions) repeat, max_repeat = 0, 10 while repeat <= max_repeat: weighting_agent = ResourceWeightingDdpgAgent( 3, create_lstm_actor_network(16), create_lstm_critic_network(16), initial_epsilon=0.5) weighting_actions = { server: weighting_agent.weight(tasks, server, state.time_step) for server, tasks in state.server_tasks.items() } print( f'Greedy actions: {[list(actions.values()) for actions in weighting_actions.values()]}' ) if any(0 < action for server, task_actions in weighting_actions.items() for task, action in task_actions.items()): weighting_actions = { server: weighting_agent.weight(tasks, server, state.time_step, training=True) for server, tasks in state.server_tasks.items() } print( f'Greedy actions: {[list(actions.values()) for actions in weighting_actions.values()]}' ) if any(0 < action for server, task_actions in weighting_actions.items() for task, action in task_actions.items()): break elif repeat == max_repeat: raise Exception() else: repeat += 1
def test_build_agent(): def assert_args(test_agent, args): """ Asserts that the proposed arguments have assigned to the agent Args: test_agent: The test agent args: The argument used on the agent """ for arg_name, arg_value in args.items(): assert getattr(test_agent, arg_name) == arg_value, \ f'Attr: {arg_name}, correct value: {arg_value}, actual value: {getattr(test_agent, arg_name)}' # Check inheritance arguments reinforcement_learning_arguments = { 'batch_size': 16, 'error_loss_fn': tf.compat.v1.losses.mean_squared_error, 'initial_training_replay_size': 1000, 'training_freq': 2, 'replay_buffer_length': 20000, 'save_frequency': 12500, 'save_folder': 'test', 'discount_factor': 0.9 } dqn_arguments = { 'target_update_tau': 1.0, 'target_update_frequency': 2500, 'optimiser': tf.keras.optimizers.Adadelta(), 'initial_epsilon': 0.5, 'final_epsilon': 0.2, 'epsilon_update_freq': 25, 'epsilon_log_freq': 10, } ddpg_arguments = { 'actor_optimiser': tf.keras.optimizers.Adadelta(), 'critic_optimiser': tf.keras.optimizers.Adadelta(), 'initial_epsilon_std': 0.8, 'final_epsilon_std': 0.1, 'epsilon_update_freq': 25, 'epsilon_log_freq': 10, 'min_value': -15.0, 'max_value': 15 } pricing_arguments = { 'failed_auction_reward': -100, 'failed_multiplier': -100 } weighting_arguments = { 'other_task_discount': 0.2, 'success_reward': 1, 'failed_reward': -2 } # DQN Agent arguments ---------------------------------------------------------------------- dqn_pricing_arguments = { **reinforcement_learning_arguments, **dqn_arguments, **pricing_arguments } dqn_weighting_arguments = { **reinforcement_learning_arguments, **dqn_arguments, **weighting_arguments } pricing_network = create_lstm_dqn_network(9, 10) categorical_pricing_network = create_lstm_categorical_dqn_network(9, 10) pricing_agents = [ TaskPricingDqnAgent(0, pricing_network, **dqn_pricing_arguments), TaskPricingDdqnAgent(1, pricing_network, **dqn_pricing_arguments), TaskPricingDuelingDqnAgent(2, pricing_network, **dqn_pricing_arguments), TaskPricingCategoricalDqnAgent(3, categorical_pricing_network, **dqn_pricing_arguments) ] for agent in pricing_agents: print(f'Agent: {agent.name}') assert_args(agent, dqn_pricing_arguments) weighting_network = create_lstm_dqn_network(16, 10) categorical_weighting_network = create_lstm_categorical_dqn_network(16, 10) weighting_agents = [ ResourceWeightingDqnAgent(0, weighting_network, **dqn_weighting_arguments), ResourceWeightingDdqnAgent(1, weighting_network, **dqn_weighting_arguments), ResourceWeightingDuelingDqnAgent(2, weighting_network, **dqn_weighting_arguments), ResourceWeightingCategoricalDqnAgent(3, categorical_weighting_network, **dqn_weighting_arguments) ] for agent in weighting_agents: print(f'Agent: {agent.name}') assert_args(agent, dqn_weighting_arguments) # PG Agent arguments ---------------------------------------------------------------------------------- ddpg_pricing_arguments = { **reinforcement_learning_arguments, **ddpg_arguments, **pricing_arguments } ddpg_weighting_arguments = { **reinforcement_learning_arguments, **ddpg_arguments, **weighting_arguments } pricing_agents = [ TaskPricingDdpgAgent(3, create_lstm_actor_network(9), create_lstm_critic_network(9), **ddpg_pricing_arguments), TaskPricingTD3Agent(4, create_lstm_actor_network(9), create_lstm_critic_network(9), create_lstm_critic_network(9), **ddpg_pricing_arguments) ] for agent in pricing_agents: print(f'Agent: {agent.name}') assert_args(agent, ddpg_pricing_arguments) weighting_agents = [ ResourceWeightingDdpgAgent(3, create_lstm_actor_network(16), create_lstm_critic_network(16), **ddpg_weighting_arguments), ResourceWeightingTD3Agent(4, create_lstm_actor_network(16), create_lstm_critic_network(16), create_lstm_critic_network(16), **ddpg_weighting_arguments) ] for agent in weighting_agents: print(f'Agent: {agent.name}') assert_args(agent, ddpg_weighting_arguments)
env = OnlineFlexibleResourceAllocationEnv([ './training/settings/basic.env', './training/settings/large_tasks_servers.env', './training/settings/limited_resources.env', './training/settings/mixture_tasks_servers.env' ]) eval_envs = generate_eval_envs(env, 5, f'./training/settings/eval_envs/algo/') task_pricing_agents = [ TaskPricingDdpgAgent(agent_num, create_lstm_actor_network(9), create_lstm_critic_network(9), save_folder=save_folder) for agent_num in range(3) ] resource_weighting_agents = [ ResourceWeightingDdpgAgent(0, create_lstm_actor_network(16), create_lstm_critic_network(16), save_folder=save_folder) ] with writer.as_default(): run_training(env, eval_envs, 600, task_pricing_agents, resource_weighting_agents, 10) for agent in task_pricing_agents: agent.save() for agent in resource_weighting_agents: agent.save()