예제 #1
0
from agents import DeepQLearningAgent, RandomAgent, TabQLearningAgent, DeepQLearningExperienceReplayAgent, \
    DoubleDeepQLearningAgent
from environments.battle_royale import BattleRoyalGameWorldTerminal, BattleRoyale
from runners import run_for_n_games_and_print_stats, run_step
import tensorflow as tf
if __name__ == "__main__":
    tf.compat.v1.disable_eager_execution()
    list_agent=[DoubleDeepQLearningAgent(action_space_size=48) if i <7  else TabQLearningAgent() for i in range(2)]
    for _ in range(100):
        gs = BattleRoyalGameWorldTerminal(0,numberofPlayer=2,list_agent = list_agent)
        gs.run()

    list_agent[0].epsilon = -1
    list_agent[1].epsilon = -1
    gs2 = BattleRoyale(numberofPlayer=2,list_agent=list_agent)
    gs2.run()


from agents import DeepQLearningAgent, RandomAgent, TabQLearningAgent
from environments.battle_royale import BattleRoyalGameWorldTerminal, BattleRoyale
from runners import run_for_n_games_and_print_stats, run_step

if __name__ == "__main__":
    list_agent = [
        TabQLearningAgent() if i < 7 else RandomAgent() for i in range(6)
    ]
    for i in range(1000):
        gs = BattleRoyalGameWorldTerminal(i, list_agent=list_agent)
        gs.run()

    #list_agent[0].epsilon =-1
    #list_agent[1].epsilon = -1
    gs2 = BattleRoyale(list_agent=list_agent)
    gs2.run()
예제 #3
0
from agents import TabQLearningAgent
from environments import GridWorldGameState
from runners import run_for_n_games_and_print_stats, run_step

if __name__ == "__main__":
    gs = GridWorldGameState()
    agent = TabQLearningAgent()

    for _ in range(500):
        run_for_n_games_and_print_stats([agent], gs, 100)

    agent.epsilon = -1.0
    run_for_n_games_and_print_stats([agent], gs, 100)

    gs = gs.clone()
    while not gs.is_game_over():
        run_step([agent], gs)
        print(gs)
예제 #4
0
from agents import DeepQLearningAgent, RandomAgent, TabQLearningAgent, DeepQLearningExperienceReplayAgent, \
    DoubleDeepQLearningAgent, DoubleDeepQLearningExprerienceReplayAgent
from environments.battle_royale import BattleRoyalGameWorldTerminal, BattleRoyale
from runners import run_for_n_games_and_print_stats, run_step
import tensorflow as tf
if __name__ == "__main__":
    tf.compat.v1.disable_eager_execution()
    list_agent = [
        DoubleDeepQLearningExprerienceReplayAgent(
            action_space_size=48) if i < 7 else TabQLearningAgent()
        for i in range(2)
    ]
    for i in range(100):
        gs = BattleRoyalGameWorldTerminal(i,
                                          numberofPlayer=2,
                                          list_agent=list_agent)
        gs.run()

    #list_agent[0].epsilon = -1
    #list_agent[1].epsilon = -1
    gs2 = BattleRoyale(numberofPlayer=2, list_agent=list_agent)
    gs2.run()
from agents import TabQLearningAgent, CommandLineAgent, RandomAgent
from environments.tictactoe import TicTacToeGameState
from runners import run_for_n_games_and_print_stats, run_step

if __name__ == "__main__":
    gs = TicTacToeGameState()
    agent0 = TabQLearningAgent()
    agent1 = TabQLearningAgent()
    agent0.alpha = 0.1
    agent0.epsilon = 0.005
    agent1.alpha = 0.1
    agent1.epsilon = 0.005

    for _ in range(100):
        run_for_n_games_and_print_stats([agent0, agent1], gs, 5000)

    agent0.epsilon = -1.0
    agent1.epsilon = -1.0
    run_for_n_games_and_print_stats([agent0, agent1], gs, 100)

    gs_clone = gs.clone()
    while not gs_clone.is_game_over():
        run_step([agent0, CommandLineAgent()], gs_clone)
        print(gs_clone)

    gs_clone = gs.clone()
    while not gs_clone.is_game_over():
        run_step([CommandLineAgent(), agent1], gs_clone)
        print(gs_clone)
from agents import RandomAgent, TabQLearningAgent
from environments.battle_royale import BattleRoyale
from runners import run_for_n_games_and_print_stats, run_step

if __name__ == "__main__":
    list_agent = list([TabQLearningAgent() for i in range(6)])
    gs = BattleRoyale(list_agent=list_agent)
    gs.run()
def run_BattleRoyal(i):
    list_agent = [DeepQLearningAgent(action_space_size=48) if i < 3 else TabQLearningAgent() for i in range(6)]
    Terminalworld = BattleRoyalGameWorldTerminal(i,list_agent=list_agent)
    a = Terminalworld.run()
    return a