def __init__(self, maxIterations=10, standardize=True, init="Furthest", userPoints=None, estimateK=False, k=2, modelId=None, keepCrossValidationPredictions=False, keepCrossValidationFoldAssignment=False, parallelizeCrossValidation=True, distribution="AUTO", foldCol=None, weightCol=None, splitRatio=1.0, seed=-1, nfolds=0, allStringColumnsToCategorical=True, columnsToCategorical=[], predictionCol="prediction", detailedPredictionCol="detailed_prediction", withDetailedPredictionCol=False, featuresCols=[], convertUnknownCategoricalLevelsToNa=False, convertInvalidNumbersToNa=False, namedMojoOutputColumns=True): Initializer.load_sparkling_jar() super(H2OKMeans, self).__init__() self._java_obj = self._new_java_obj( "ai.h2o.sparkling.ml.algos.H2OKMeans", self.uid) self._setDefaultValuesFromJava() kwargs = Utils.getInputKwargs(self) self._set(**kwargs)
def __init__(self, epochs=10.0, l1=0.0, l2=0.0, hidden=[200, 200], reproducible=False, modelId=None, keepCrossValidationPredictions=False, keepCrossValidationFoldAssignment=False, parallelizeCrossValidation=True, distribution="AUTO", labelCol="label", foldCol=None, weightCol=None, splitRatio=1.0, seed=-1, nfolds=0, allStringColumnsToCategorical=True, columnsToCategorical=[], predictionCol="prediction", detailedPredictionCol="detailed_prediction", withDetailedPredictionCol=False, featuresCols=[], convertUnknownCategoricalLevelsToNa=False, convertInvalidNumbersToNa=False, namedMojoOutputColumns=True): Initializer.load_sparkling_jar() super(H2ODeepLearning, self).__init__() self._java_obj = self._new_java_obj("ai.h2o.sparkling.ml.algos.H2ODeepLearning", self.uid) self._setDefaultValuesFromJava() kwargs = Utils.getInputKwargs(self) self._set(**kwargs)
def __init__(self, algo=None, hyperParameters={}, strategy="Cartesian", maxRuntimeSecs=0.0, maxModels=0, stoppingRounds=0, stoppingTolerance=0.001, stoppingMetric="AUTO", selectBestModelBy="AUTO", parallelism=1, labelCol="label", foldCol=None, weightCol=None, offsetCol=None, splitRatio=1.0, seed=-1, nfolds=0, allStringColumnsToCategorical=True, columnsToCategorical=[], predictionCol="prediction", detailedPredictionCol="detailed_prediction", withDetailedPredictionCol=False, featuresCols=[], convertUnknownCategoricalLevelsToNa=False, convertInvalidNumbersToNa=False, namedMojoOutputColumns=True, **DeprecatedParams): Initializer.load_sparkling_jar() super(H2OGridSearch, self).__init__() self._java_obj = self._new_java_obj( "ai.h2o.sparkling.ml.algos.H2OGridSearch", self.uid) self._setDefaultValuesFromJava() kwargs = Utils.getInputKwargs(self) self._set(**kwargs)
def __init__(self, modelId=None, splitRatio=1.0, labelCol="label", weightCol=None, featuresCols=[], allStringColumnsToCategorical=True, columnsToCategorical=[], nfolds=0, keepCrossValidationPredictions=False, keepCrossValidationFoldAssignment=False, parallelizeCrossValidation=True, seed=-1, distribution="AUTO", ntrees=50, maxDepth=5, minRows=10.0, nbins=20, nbinsCats=1024, minSplitImprovement=1e-5, histogramType="AUTO", r2Stopping=java_max_double_value, nbinsTopLevel=1<<10, buildTreeOneNode=False, scoreTreeInterval=0, sampleRate=1.0, sampleRatePerClass=None, colSampleRateChangePerLevel=1.0, colSampleRatePerTree=1.0, learnRate=0.1, learnRateAnnealing=1.0, colSampleRate=1.0, maxAbsLeafnodePred=java_max_double_value, predNoiseBandwidth=0.0, convertUnknownCategoricalLevelsToNa=False, foldCol=None, predictionCol="prediction", detailedPredictionCol="detailed_prediction", withDetailedPredictionCol=False, convertInvalidNumbersToNa=False, **deprecatedArgs): Initializer.load_sparkling_jar() super(H2OGBM, self).__init__() self._java_obj = self._new_java_obj("ai.h2o.sparkling.ml.algos.H2OGBM", self.uid) self._setDefault(modelId=None, splitRatio=1.0, labelCol="label", weightCol=None, featuresCols=[], allStringColumnsToCategorical=True, columnsToCategorical=[], nfolds=0, keepCrossValidationPredictions=False, keepCrossValidationFoldAssignment=False, parallelizeCrossValidation=True, seed=-1, distribution="AUTO", ntrees=50, maxDepth=5, minRows=10.0, nbins=20, nbinsCats=1024, minSplitImprovement=1e-5, histogramType="AUTO", r2Stopping=_jvm().Double.MAX_VALUE, nbinsTopLevel=1<<10, buildTreeOneNode=False, scoreTreeInterval=0, sampleRate=1.0, sampleRatePerClass=None, colSampleRateChangePerLevel=1.0, colSampleRatePerTree=1.0, learnRate=0.1, learnRateAnnealing=1.0, colSampleRate=1.0, maxAbsLeafnodePred=_jvm().Double.MAX_VALUE, predNoiseBandwidth=0.0, convertUnknownCategoricalLevelsToNa=False, foldCol=None, predictionCol="prediction", detailedPredictionCol="detailed_prediction", withDetailedPredictionCol=False, convertInvalidNumbersToNa=False) kwargs = get_input_kwargs(self) self.setParams(**kwargs)
def __init__(self, keep=False, columns=[]): Initializer.load_sparkling_jar() super(ColumnPruner, self).__init__() self._java_obj = self._new_java_obj( "ai.h2o.sparkling.ml.features.ColumnPruner", self.uid) self._setDefaultValuesFromJava() kwargs = Utils.getInputKwargs(self) self._set(**kwargs)
def __init__(self, keep=False, columns=[]): Initializer.load_sparkling_jar() super(ColumnPruner, self).__init__() self._java_obj = self._new_java_obj( "ai.h2o.sparkling.ml.features.ColumnPruner", self.uid) self._setDefault(keep=False, columns=[]) kwargs = get_input_kwargs(self) self.setParams(**kwargs)
def __init__(self, featuresCols=[], algo=None, splitRatio=1.0, hyperParameters={}, labelCol="label", weightCol=None, allStringColumnsToCategorical=True, columnsToCategorical=[], strategy="Cartesian", maxRuntimeSecs=0.0, maxModels=0, seed=-1, stoppingRounds=0, stoppingTolerance=0.001, stoppingMetric="AUTO", nfolds=0, selectBestModelBy="AUTO", selectBestModelDecreasing=True, foldCol=None, convertUnknownCategoricalLevelsToNa=True, predictionCol="prediction", detailedPredictionCol="detailed_prediction", withDetailedPredictionCol=False, convertInvalidNumbersToNa=False, **deprecatedArgs): Initializer.load_sparkling_jar() super(H2OGridSearch, self).__init__() self._java_obj = self._new_java_obj( "ai.h2o.sparkling.ml.algos.H2OGridSearch", self.uid) self._setDefault(featuresCols=[], algo=None, splitRatio=1.0, hyperParameters={}, labelCol="label", weightCol=None, allStringColumnsToCategorical=True, columnsToCategorical=[], strategy="Cartesian", maxRuntimeSecs=0.0, maxModels=0, seed=-1, stoppingRounds=0, stoppingTolerance=0.001, stoppingMetric="AUTO", nfolds=0, selectBestModelBy="AUTO", selectBestModelDecreasing=True, foldCol=None, convertUnknownCategoricalLevelsToNa=True, predictionCol="prediction", detailedPredictionCol="detailed_prediction", withDetailedPredictionCol=False, convertInvalidNumbersToNa=False) kwargs = get_input_kwargs(self) self.setParams(**kwargs)
def __init__(self, standardize=True, family="gaussian", link="family_default", solver="AUTO", tweedieVariancePower=0.0, tweedieLinkPower=0.0, alphaValue=None, lambdaValue=None, missingValuesHandling="MeanImputation", prior=-1.0, lambdaSearch=False, nlambdas=-1, nonNegative=False, exactLambdas=False, lambdaMinRatio=-1.0, maxIterations=-1, intercept=True, betaEpsilon=1e-4, objectiveEpsilon=-1.0, gradientEpsilon=-1.0, objReg=-1.0, computePValues=False, removeCollinearCols=False, interactions=None, interactionPairs=None, earlyStopping=True, modelId=None, keepCrossValidationPredictions=False, keepCrossValidationFoldAssignment=False, parallelizeCrossValidation=True, distribution="AUTO", labelCol="label", foldCol=None, weightCol=None, splitRatio=1.0, seed=-1, nfolds=0, allStringColumnsToCategorical=True, columnsToCategorical=[], predictionCol="prediction", detailedPredictionCol="detailed_prediction", withDetailedPredictionCol=False, featuresCols=[], convertUnknownCategoricalLevelsToNa=False, convertInvalidNumbersToNa=False, namedMojoOutputColumns=True, **DeprecatedParams): Initializer.load_sparkling_jar() super(H2OGLM, self).__init__() self._java_obj = self._new_java_obj("ai.h2o.sparkling.ml.algos.H2OGLM", self.uid) self._setDefaultValuesFromJava() kwargs = Utils.getInputKwargs(self) Utils.propagateValueFromDeprecatedProperty(kwargs, "alpha", "alphaValue") Utils.propagateValueFromDeprecatedProperty(kwargs, "lambda_", "lambdaValue") self._set(**kwargs)
def __init__(self, foldCol=None, labelCol="label", inputCols=[], holdoutStrategy = "None", blendedAvgEnabled=False, blendedAvgInflectionPoint=10.0, blendedAvgSmoothing=20.0, noise=0.01, noiseSeed=-1): Initializer.load_sparkling_jar() super(H2OTargetEncoder, self).__init__() self._java_obj = self._new_java_obj("ai.h2o.sparkling.ml.features.H2OTargetEncoder", self.uid) self._setDefault(foldCol=None, labelCol="label", inputCols=[], holdoutStrategy="None", blendedAvgEnabled=False, blendedAvgInflectionPoint=10.0, blendedAvgSmoothing=20.0, noise=0.01, noiseSeed=-1) kwargs = get_input_kwargs(self) self.setParams(**kwargs)
def __init__(self, learnRate=0.1, learnRateAnnealing=1.0, colSampleRate=1.0, maxAbsLeafnodePred=Utils.javaDoubleMaxValue, predNoiseBandwidth=0.0, quantileAlpha=0.5, ntrees=50, maxDepth=5, minRows=10.0, nbins=20, nbinsCats=1024, minSplitImprovement=1e-5, histogramType="AUTO", nbinsTopLevel=1 << 10, buildTreeOneNode=False, scoreTreeInterval=0, sampleRate=1.0, sampleRatePerClass=None, colSampleRateChangePerLevel=1.0, colSampleRatePerTree=1.0, modelId=None, keepCrossValidationPredictions=False, keepCrossValidationFoldAssignment=False, parallelizeCrossValidation=True, distribution="AUTO", labelCol="label", foldCol=None, weightCol=None, offsetCol=None, splitRatio=1.0, seed=-1, nfolds=0, allStringColumnsToCategorical=True, columnsToCategorical=[], predictionCol="prediction", detailedPredictionCol="detailed_prediction", withDetailedPredictionCol=False, featuresCols=[], convertUnknownCategoricalLevelsToNa=False, convertInvalidNumbersToNa=False, namedMojoOutputColumns=True, monotoneConstraints={}, stoppingRounds=0, stoppingMetric="AUTO", stoppingTolerance=0.001): Initializer.load_sparkling_jar() super(H2OGBM, self).__init__() self._java_obj = self._new_java_obj("ai.h2o.sparkling.ml.algos.H2OGBM", self.uid) self._setDefaultValuesFromJava() kwargs = Utils.getInputKwargs(self) self._set(**kwargs)
def __init__(self, maxIterations=10, standardize=True, init="Furthest", userPoints=None, estimateK=False, k=2, modelId=None, keepCrossValidationPredictions=False, keepCrossValidationFoldAssignment=False, keepCrossValidationModels=True, parallelizeCrossValidation=True, distribution="AUTO", foldCol=None, weightCol=None, splitRatio=1.0, seed=-1, nfolds=0, columnsToCategorical=[], predictionCol="prediction", detailedPredictionCol="detailed_prediction", withDetailedPredictionCol=False, featuresCols=[], convertUnknownCategoricalLevelsToNa=False, convertInvalidNumbersToNa=False, namedMojoOutputColumns=True, quantileAlpha=0.5, tweediePower=1.5, maxCategoricalLevels=10, ignoredCols=None, ignoreConstCols=True, scoreEachIteration=False, customDistributionFunc=None, customMetricFunc=None, exportCheckpointsDir=None, stoppingRounds=0, stoppingMetric="AUTO", maxRuntimeSecs=0.0, clusterSizeConstraints=None, stoppingTolerance=0.001, foldAssignment="AUTO", categoricalEncoding="AUTO", huberAlpha=0.9): Initializer.load_sparkling_jar() super(H2OKMeans, self).__init__() self._java_obj = self._new_java_obj( "ai.h2o.sparkling.ml.algos.H2OKMeans", self.uid) self._setDefaultValuesFromJava() kwargs = Utils.getInputKwargs(self) self._set(**kwargs)
def __init__(self, binomialDoubleTrees=False, mtries=-1, ntrees=50, maxDepth=20, minRows=1, nbins=20, nbinsCats=1024, minSplitImprovement=1e-5, histogramType="AUTO", r2Stopping=Utils.javaDoubleMaxValue, nbinsTopLevel=1 << 10, buildTreeOneNode=False, scoreTreeInterval=0, sampleRate=1.0, sampleRatePerClass=None, colSampleRateChangePerLevel=1.0, colSampleRatePerTree=1.0, modelId=None, keepCrossValidationPredictions=False, keepCrossValidationFoldAssignment=False, parallelizeCrossValidation=True, distribution="AUTO", labelCol="label", foldCol=None, weightCol=None, splitRatio=1.0, seed=-1, nfolds=0, allStringColumnsToCategorical=True, columnsToCategorical=[], predictionCol="prediction", detailedPredictionCol="detailed_prediction", withDetailedPredictionCol=False, featuresCols=[], convertUnknownCategoricalLevelsToNa=False, convertInvalidNumbersToNa=False, namedMojoOutputColumns=True): Initializer.load_sparkling_jar() super(H2ODRF, self).__init__() self._java_obj = self._new_java_obj("ai.h2o.sparkling.ml.algos.H2ODRF", self.uid) self._setDefaultValuesFromJava() kwargs = Utils.getInputKwargs(self) self._set(**kwargs)
def __init__(self, ignoredCols=[], includeAlgos=[ "GLM", "DRF", "GBM", "DeepLearning", "StackedEnsemble", "XGBoost" ], excludeAlgos=[], projectName=None, maxRuntimeSecs=0.0, stoppingRounds=3, stoppingTolerance=0.001, stoppingMetric="AUTO", sortMetric="AUTO", balanceClasses=False, classSamplingFactors=None, maxAfterBalanceSize=5.0, keepCrossValidationPredictions=False, keepCrossValidationModels=False, maxModels=0, labelCol="label", foldCol=None, weightCol=None, offsetCol=None, splitRatio=1.0, seed=-1, nfolds=5, allStringColumnsToCategorical=True, columnsToCategorical=[], predictionCol="prediction", detailedPredictionCol="detailed_prediction", withDetailedPredictionCol=False, featuresCols=[], convertUnknownCategoricalLevelsToNa=False, convertInvalidNumbersToNa=False, namedMojoOutputColumns=True, monotoneConstraints={}): Initializer.load_sparkling_jar() super(H2OAutoML, self).__init__() self._java_obj = self._new_java_obj( "ai.h2o.sparkling.ml.algos.H2OAutoML", self.uid) self._setDefaultValuesFromJava() kwargs = Utils.getInputKwargs(self) self._set(**kwargs)
def __init__(self, foldCol=None, labelCol="label", inputCols=[], outputCols=[], holdoutStrategy="None", blendedAvgEnabled=False, blendedAvgInflectionPoint=10.0, blendedAvgSmoothing=20.0, noise=0.01, noiseSeed=-1): Initializer.load_sparkling_jar() super(H2OTargetEncoder, self).__init__() self._java_obj = self._new_java_obj( "ai.h2o.sparkling.ml.features.H2OTargetEncoder", self.uid) self._setDefaultValuesFromJava() kwargs = Utils.getInputKwargs(self) if 'inputCols' in kwargs: kwargs['inputCols'] = self._convertInputCols(kwargs['inputCols']) self._set(**kwargs) self.setInputCols(self.getInputCols())
def __init__(self, featuresCols=[], labelCol="label", allStringColumnsToCategorical=True, columnsToCategorical=[], splitRatio=1.0, foldCol=None, weightCol=None, ignoredCols=[], includeAlgos=None, excludeAlgos=None, projectName=None, maxRuntimeSecs=3600.0, stoppingRounds=3, stoppingTolerance=0.001, stoppingMetric="AUTO", nfolds=5, convertUnknownCategoricalLevelsToNa=True, seed=-1, sortMetric="AUTO", balanceClasses=False, classSamplingFactors=None, maxAfterBalanceSize=5.0, keepCrossValidationPredictions=True, keepCrossValidationModels=True, maxModels=0, predictionCol="prediction", detailedPredictionCol="detailed_prediction", withDetailedPredictionCol=False, convertInvalidNumbersToNa=False, **deprecatedArgs): Initializer.load_sparkling_jar() super(H2OAutoML, self).__init__() self._java_obj = self._new_java_obj("ai.h2o.sparkling.ml.algos.H2OAutoML", self.uid) self._setDefault(featuresCols=[], labelCol="label", allStringColumnsToCategorical=True, columnsToCategorical=[], splitRatio=1.0, foldCol=None, weightCol=None, ignoredCols=[], includeAlgos=None, excludeAlgos=None, projectName=None, maxRuntimeSecs=3600.0, stoppingRounds=3, stoppingTolerance=0.001, stoppingMetric="AUTO", nfolds=5, convertUnknownCategoricalLevelsToNa=True, seed=-1, sortMetric="AUTO", balanceClasses=False, classSamplingFactors=None, maxAfterBalanceSize=5.0, keepCrossValidationPredictions=True, keepCrossValidationModels=True, maxModels=0, predictionCol="prediction", detailedPredictionCol="detailed_prediction", withDetailedPredictionCol=False, convertInvalidNumbersToNa=False) kwargs = get_input_kwargs(self) self.setParams(**kwargs)
def __init__(self, algo=None, hyperParameters={}, strategy="Cartesian", maxRuntimeSecs=0.0, maxModels=0, stoppingRounds=0, stoppingTolerance=0.001, stoppingMetric="AUTO", selectBestModelBy="AUTO", selectBestModelDecreasing=True, labelCol="label", foldCol=None, weightCol=None, splitRatio=1.0, seed=-1, nfolds=0, allStringColumnsToCategorical=True, columnsToCategorical=[], predictionCol="prediction", detailedPredictionCol="detailed_prediction", withDetailedPredictionCol=False, featuresCols=[], convertUnknownCategoricalLevelsToNa=False, convertInvalidNumbersToNa=False): Initializer.load_sparkling_jar() super(H2OGridSearch, self).__init__() self._java_obj = self._new_java_obj( "ai.h2o.sparkling.ml.algos.H2OGridSearch", self.uid) self._setDefaultValuesFromJava(["algoParams"]) kwargs = Utils.getInputKwargs(self) if "algo" in kwargs and kwargs["algo"] is not None: tmp = kwargs["algo"] del kwargs['algo'] self._java_obj.setAlgo(tmp._java_obj) self._set(**kwargs)
def __init__(self, quietMode=True, ntrees=50, maxDepth=6, minRows=1.0, minChildWeight=1.0, learnRate=0.3, eta=0.3, learnRateAnnealing=1.0, sampleRate=1.0, subsample=1.0, colSampleRate=1.0, colSampleByLevel=1.0, colSampleRatePerTree=1.0, colSampleByTree=1.0, maxAbsLeafnodePred=0.0, maxDeltaStep=0.0, scoreTreeInterval=0, initialScoreInterval=4000, scoreInterval=4000, minSplitImprovement=0.0, gamma=0.0, nthread=-1, maxBins=256, maxLeaves=0, minSumHessianInLeaf=100.0, minDataInLeaf=0.0, treeMethod="auto", growPolicy="depthwise", booster="gbtree", dmatrixType="auto", regLambda=0.0, regAlpha=0.0, sampleType="uniform", normalizeType="tree", rateDrop=0.0, oneDrop=False, skipDrop=0.0, gpuId=0, backend="auto", modelId=None, keepCrossValidationPredictions=False, keepCrossValidationFoldAssignment=False, parallelizeCrossValidation=True, distribution="AUTO", labelCol="label", foldCol=None, weightCol=None, offsetCol=None, splitRatio=1.0, seed=-1, nfolds=0, allStringColumnsToCategorical=True, columnsToCategorical=[], predictionCol="prediction", detailedPredictionCol="detailed_prediction", withDetailedPredictionCol=False, featuresCols=[], convertUnknownCategoricalLevelsToNa=False, convertInvalidNumbersToNa=False, namedMojoOutputColumns=True, monotoneConstraints={}, stoppingRounds=0, stoppingMetric="AUTO", stoppingTolerance=0.001, **DeprecatedParams): Initializer.load_sparkling_jar() super(H2OXGBoost, self).__init__() self._java_obj = self._new_java_obj( "ai.h2o.sparkling.ml.algos.H2OXGBoost", self.uid) self._setDefaultValuesFromJava() kwargs = Utils.getInputKwargs(self) self._set(**kwargs)
def __init__(self, binomialDoubleTrees=False, mtries=-1, ntrees=50, maxDepth=20, minRows=1, nbins=20, nbinsCats=1024, minSplitImprovement=1e-5, histogramType="AUTO", nbinsTopLevel=1 << 10, buildTreeOneNode=False, scoreTreeInterval=0, sampleRate=1.0, sampleRatePerClass=None, colSampleRateChangePerLevel=1.0, colSampleRatePerTree=1.0, modelId=None, keepCrossValidationPredictions=False, keepCrossValidationFoldAssignment=False, parallelizeCrossValidation=True, distribution="AUTO", labelCol="label", foldCol=None, weightCol=None, offsetCol=None, splitRatio=1.0, seed=-1, nfolds=0, columnsToCategorical=[], predictionCol="prediction", detailedPredictionCol="detailed_prediction", withDetailedPredictionCol=False, featuresCols=[], convertUnknownCategoricalLevelsToNa=False, convertInvalidNumbersToNa=False, namedMojoOutputColumns=True, stoppingRounds=0, stoppingMetric="AUTO", stoppingTolerance=0.001, customDistributionFunc=None, customMetricFunc=None, maxRuntimeSecs=0.0, exportCheckpointsDir=None, classSamplingFactors=None, huberAlpha=0.9, tweediePower=1.5, quantileAlpha=0.5, ignoredCols=None, ignoreConstCols=True, scoreEachIteration=False, maxCategoricalLevels=10, maxAfterBalanceSize=5.0, balanceClasses=False, calibrateModel=False, checkConstantResponse=True, foldAssignment="AUTO", categoricalEncoding="AUTO", keepCrossValidationModels=True): Initializer.load_sparkling_jar() super(H2ODRF, self).__init__() self._java_obj = self._new_java_obj("ai.h2o.sparkling.ml.algos.H2ODRF", self.uid) self._setDefaultValuesFromJava() kwargs = Utils.getInputKwargs(self) self._set(**kwargs)
def __init__(self, standardize=True, family="gaussian", link="family_default", solver="AUTO", tweedieVariancePower=0.0, tweedieLinkPower=0.0, alphaValue=None, lambdaValue=None, missingValuesHandling="MeanImputation", prior=-1.0, lambdaSearch=False, nlambdas=-1, nonNegative=False, lambdaMinRatio=-1.0, maxIterations=-1, intercept=True, betaEpsilon=1e-4, objectiveEpsilon=-1.0, gradientEpsilon=-1.0, objReg=-1.0, computePValues=False, removeCollinearCols=False, interactions=None, interactionPairs=None, earlyStopping=True, modelId=None, keepCrossValidationPredictions=False, keepCrossValidationFoldAssignment=False, keepCrossValidationModels=True, parallelizeCrossValidation=True, distribution="AUTO", labelCol="label", foldCol=None, weightCol=None, offsetCol=None, splitRatio=1.0, seed=-1, nfolds=0, columnsToCategorical=[], predictionCol="prediction", detailedPredictionCol="detailed_prediction", withDetailedPredictionCol=False, featuresCols=[], convertUnknownCategoricalLevelsToNa=False, convertInvalidNumbersToNa=False, namedMojoOutputColumns=True, balanceClasses=False, quantileAlpha=0.5, stoppingMetric="AUTO", stoppingTolerance=0.0001, stoppingRounds=3, categoricalEncoding="AUTO", exportCheckpointsDir=None, ignoredCols=None, ignoreConstCols=True, classSamplingFactors=None, maxAfterBalanceSize=5.0, maxCategoricalLevels=10, HGLM=False, customDistributionFunc=None, customMetricFunc=None, startval=None, theta=0.0000000001, tweediePower=1.5, scoreEachIteration=False, huberAlpha=0.9, maxActivePredictors=-1, foldAssignment="AUTO", calcLike=False, maxRuntimeSecs=0.0, **DeprecatedParams): Initializer.load_sparkling_jar() super(H2OGLM, self).__init__() self._java_obj = self._new_java_obj("ai.h2o.sparkling.ml.algos.H2OGLM", self.uid) self._setDefaultValuesFromJava() kwargs = Utils.getInputKwargs(self) self._set(**kwargs)
def __init__(self, epochs=10.0, l1=0.0, l2=0.0, hidden=[200, 200], reproducible=False, activation="Rectifier", quantileAlpha=0.5, modelId=None, keepCrossValidationPredictions=False, keepCrossValidationFoldAssignment=False, keepCrossValidationModels=True, parallelizeCrossValidation=True, distribution="AUTO", labelCol="label", foldCol=None, weightCol=None, offsetCol=None, splitRatio=1.0, seed=-1, nfolds=0, columnsToCategorical=[], predictionCol="prediction", detailedPredictionCol="detailed_prediction", withDetailedPredictionCol=False, featuresCols=[], convertUnknownCategoricalLevelsToNa=False, convertInvalidNumbersToNa=False, namedMojoOutputColumns=True, stoppingRounds=5, stoppingMetric="AUTO", stoppingTolerance=0.001, inputDropoutRatio=0.0, shuffleTrainingData=False, rateDecay=1.0, singleNodeMode=False, ignoredCols=None, ignoreConstCols=True, hiddenDropoutRatios=None, useAllFactorLevels=True, missingValuesHandling="MeanImputation", maxCategoricalFeatures=2147483647, fastMode=True, sparse=False, scoreTrainingSamples=10000, adaptiveRate=True, initialWeightScale=1.0, customMetricFunc=None, customDistributionFunc=None, autoencoder=False, classificationStop=0.0, standardize=True, targetRatioCommToComp=0.05, classSamplingFactors=None, elasticAveragingMovingRate=0.9, quietMode=False, scoreValidationSampling="Uniform", epsilon=.00000001, trainSamplesPerIteration=-2, diagnostics=True, momentumStable=0.0, rate=0.005, regressionStop=0.000001, initialWeightDistribution="UniformAdaptive", sparsityBeta=0.0, variableImportances=True, loss="Automatic", rateAnnealing=0.000001, scoreDutyCycle=0.1, maxRuntimeSecs=0.0, exportCheckpointsDir=None, nesterovAcceleratedGradient=True, momentumRamp=1000000.0, rho=0.99, scoreInterval=5.0, balanceClasses=False, elasticAveraging=False, averageActivation=0.0, forceLoadBalance=True, categoricalEncoding="AUTO", momentumStart=0.0, maxAfterBalanceSize=5.0, tweediePower=1.5, huberAlpha=0.9, overwriteWithBestModel=True, scoreEachIteration=False, exportWeightsAndBiases=False, foldAssignment="AUTO", maxW2=sys.float_info.max, elasticAveragingRegularization=0.001, replicateTrainingData=True, miniBatchSize=1, scoreValidationSamples=0, maxCategoricalLevels=10): Initializer.load_sparkling_jar() super(H2ODeepLearning, self).__init__() self._java_obj = self._new_java_obj( "ai.h2o.sparkling.ml.algos.H2ODeepLearning", self.uid) self._setDefaultValuesFromJava() kwargs = Utils.getInputKwargs(self) self._set(**kwargs)