예제 #1
0
    def execute(self, context):
        job_id = _normalize_mlengine_job_id(self._job_id)
        prediction_request = {
            'jobId': job_id,
            'predictionInput': {
                'dataFormat': self._data_format,
                'inputPaths': self._input_paths,
                'outputPath': self._output_path,
                'region': self._region
            }
        }

        if self._uri:
            prediction_request['predictionInput']['uri'] = self._uri
        elif self._model_name:
            origin_name = 'projects/{}/models/{}'.format(
                self._project_id, self._model_name)
            if not self._version_name:
                prediction_request['predictionInput'][
                    'modelName'] = origin_name
            else:
                prediction_request['predictionInput']['versionName'] = \
                    origin_name + '/versions/{}'.format(self._version_name)

        if self._max_worker_count:
            prediction_request['predictionInput'][
                'maxWorkerCount'] = self._max_worker_count

        if self._runtime_version:
            prediction_request['predictionInput'][
                'runtimeVersion'] = self._runtime_version

        if self._signature_name:
            prediction_request['predictionInput'][
                'signatureName'] = self._signature_name

        hook = MLEngineHook(self._gcp_conn_id, self._delegate_to)

        # Helper method to check if the existing job's prediction input is the
        # same as the request we get here.
        def check_existing_job(existing_job):
            return existing_job.get('predictionInput', None) == \
                prediction_request['predictionInput']

        try:
            finished_prediction_job = hook.create_job(self._project_id,
                                                      prediction_request,
                                                      check_existing_job)
        except HttpError:
            raise

        if finished_prediction_job['state'] != 'SUCCEEDED':
            self.log.error('MLEngine batch prediction job failed: %s',
                           str(finished_prediction_job))
            raise RuntimeError(finished_prediction_job['errorMessage'])

        return finished_prediction_job['predictionOutput']
예제 #2
0
    def execute(self, context):
        job_id = _normalize_mlengine_job_id(self._job_id)
        training_request = {
            'jobId': job_id,
            'trainingInput': {
                'scaleTier': self._scale_tier,
                'packageUris': self._package_uris,
                'pythonModule': self._training_python_module,
                'region': self._region,
                'args': self._training_args,
            }
        }

        if self._runtime_version:
            training_request['trainingInput'][
                'runtimeVersion'] = self._runtime_version

        if self._python_version:
            training_request['trainingInput'][
                'pythonVersion'] = self._python_version

        if self._job_dir:
            training_request['trainingInput']['jobDir'] = self._job_dir

        if self._scale_tier is not None and self._scale_tier.upper(
        ) == "CUSTOM":
            training_request['trainingInput']['masterType'] = self._master_type

        if self._mode == 'DRY_RUN':
            self.log.info('In dry_run mode.')
            self.log.info('MLEngine Training job request is: %s',
                          training_request)
            return

        hook = MLEngineHook(gcp_conn_id=self._gcp_conn_id,
                            delegate_to=self._delegate_to)

        # Helper method to check if the existing job's training input is the
        # same as the request we get here.
        def check_existing_job(existing_job):
            return existing_job.get('trainingInput', None) == \
                training_request['trainingInput']

        try:
            finished_training_job = hook.create_job(self._project_id,
                                                    training_request,
                                                    check_existing_job)
        except HttpError:
            raise

        if finished_training_job['state'] != 'SUCCEEDED':
            self.log.error('MLEngine training job failed: %s',
                           str(finished_training_job))
            raise RuntimeError(finished_training_job['errorMessage'])