def test_success(self, mock_hook): task = MLEngineDeleteVersionOperator( task_id="task-id", project_id=TEST_PROJECT_ID, model_name=TEST_MODEL_NAME, version_name=TEST_VERSION_NAME, gcp_conn_id=TEST_GCP_CONN_ID, delegate_to=TEST_DELEGATE_TO, ) task.execute(None) mock_hook.assert_called_once_with(delegate_to=TEST_DELEGATE_TO, gcp_conn_id=TEST_GCP_CONN_ID) mock_hook.return_value.delete_version.assert_called_once_with( project_id=TEST_PROJECT_ID, model_name=TEST_MODEL_NAME, version_name=TEST_VERSION_NAME )
def test_missing_model_name(self): with pytest.raises(AirflowException): MLEngineDeleteVersionOperator( task_id="task-id", project_id=TEST_PROJECT_ID, model_name=None, version_name=TEST_VERSION_NAME, gcp_conn_id=TEST_GCP_CONN_ID, delegate_to=TEST_DELEGATE_TO, )
prediction = MLEngineStartBatchPredictionJobOperator( task_id="prediction", project_id=PROJECT_ID, job_id="prediction-{{ ts_nodash }}-{{ params.model_name }}", region="us-central1", model_name=MODEL_NAME, data_format="TEXT", input_paths=[PREDICTION_INPUT], output_path=PREDICTION_OUTPUT, labels={"job_type": "prediction"}, ) # [END howto_operator_gcp_mlengine_get_prediction] # [START howto_operator_gcp_mlengine_delete_version] delete_version = MLEngineDeleteVersionOperator(task_id="delete-version", project_id=PROJECT_ID, model_name=MODEL_NAME, version_name="v1") # [END howto_operator_gcp_mlengine_delete_version] # [START howto_operator_gcp_mlengine_delete_model] delete_model = MLEngineDeleteModelOperator(task_id="delete-model", project_id=PROJECT_ID, model_name=MODEL_NAME, delete_contents=True) # [END howto_operator_gcp_mlengine_delete_model] training >> create_version training >> create_version_2 create_model >> get_model >> [get_model_result, delete_model] create_model >> get_model >> delete_model create_model >> create_version >> create_version_2 >> set_defaults_version >> list_version