def test_plot_ti_dhdl(): '''Just test if the plot runs''' bz = load_benzene().data dHdl_coul = pd.concat([extract_dHdl(xvg, T=300) for xvg in bz['Coulomb']]) ti_coul = TI() ti_coul.fit(dHdl_coul) assert isinstance(plot_ti_dhdl(ti_coul), matplotlib.axes.Axes) fig, ax = plt.subplots(figsize=(8, 6)) assert isinstance(plot_ti_dhdl(ti_coul, ax=ax), matplotlib.axes.Axes) assert isinstance(plot_ti_dhdl(ti_coul, labels=['Coul']), matplotlib.axes.Axes) assert isinstance(plot_ti_dhdl(ti_coul, labels=['Coul'], colors=['r']), matplotlib.axes.Axes) dHdl_vdw = pd.concat([extract_dHdl(xvg, T=300) for xvg in bz['VDW']]) ti_vdw = TI().fit(dHdl_vdw) assert isinstance(plot_ti_dhdl([ti_coul, ti_vdw]), matplotlib.axes.Axes) ti_coul.dhdl = pd.DataFrame.from_dict({ 'fep': range(100) }, orient='index', columns=np.arange(100) / 100).T assert isinstance(plot_ti_dhdl(ti_coul), matplotlib.axes.Axes)
def test_plot_ti_dhdl_unknown(self, estimaters): ti, mbar = estimaters with pytest.raises(ValueError): fig = plot_ti_dhdl(ti, units='ddd')
def test_plot_ti_dhdl_kcal(self, estimaters): ti, mbar = estimaters ax = plot_ti_dhdl(ti, units='kcal/mol') assert isinstance(ax, matplotlib.axes.Axes) plt.close(ax.figure)