START_NUMBER = 60 # what to end at hm_data = 111 # use a previous model to begin? START_FRESH = False WIDTH = 160 HEIGHT = 120 LR = 1e-3 EPOCHS = 1 MODEL_NAME = '' EXISTING_MODEL_NAME = '' model = alexnet2(WIDTH, HEIGHT, LR, output=9) if not START_FRESH: model.load(EXISTING_MODEL_NAME) for i in range(EPOCHS): data_order = [i for i in range(START_NUMBER, hm_data + 1)] shuffle(data_order) for i in data_order: train_data = np.load('training_data.npy'.format(i)) df = pd.DataFrame(train_data) df = df.iloc[np.random.permutation(len(df))] train_data = df.values.tolist() train = train_data[:-100]
from alexnet import alexnet, alexnet2 import numpy as np import os import tensorflow as tf data = np.load('training_data_after_Canny.npy', allow_pickle=True) model = alexnet2(152, 104, 0.5, 3) model.predict(data[0][0]) print(1)
START_NUMBER = 60 # what to end at hm_data = 111 # use a previous model to begin? START_FRESH = False WIDTH = 160 HEIGHT = 120 LR = 1e-3 EPOCHS = 1 MODEL_NAME = '' EXISTING_MODEL_NAME = '' model = alexnet2(WIDTH, HEIGHT, LR, output=9) if not START_FRESH: model.load(EXISTING_MODEL_NAME) for i in range(EPOCHS): data_order = [i for i in range(START_NUMBER,hm_data+1)] shuffle(data_order) for i in data_order: train_data = np.load('training_data-{}.npy'.format(i)) df = pd.DataFrame(train_data) df = df.iloc[np.random.permutation(len(df))] train_data = df.values.tolist() train = train_data[:-100]
#ReleaseKey(A) time.sleep(t_time) ReleaseKey(A) def right(): PressKey(W) PressKey(D) ReleaseKey(A) #ReleaseKey(W) #ReleaseKey(D) time.sleep(t_time) ReleaseKey(D) model = alexnet2(WIDTH, HEIGHT, LR) model.load(MODEL_NAME) def region_of_interest(img, vertices): mask = np.zeros_like(img) match_mask_color = 255 cv2.fillPoly(mask, vertices, match_mask_color) masked_image = cv2.bitwise_and(img, mask) return masked_image def main(): last_time = time.time() region_of_interest_vertices = [(0, 480), (0, 294), (640, 294), (640, 480)] for i in list(range(4))[::-1]:
def forward_right(): PressKey(W) PressKey(D) ReleaseKey(A) def no_keys(): PressKey(W) ReleaseKey(A) ReleaseKey(S) ReleaseKey(D) model = alexnet2(width, height, 6) model.load(model_name) def main(): last_time = time() for i in range(1, 4): print(4 - i) sleep(1) paused = False while (True): if not paused: screen = takeScreenShot(region=(0, 30, 800, 630)) print('loop took {} seconds'.format(time() - last_time))
from random import shuffle import pandas as pd import tflearn, os # what to start at START_NUMBER = 60 # what to end at hm_data = 111 w = 160 h = 120 modelName = 'GTA5-TestModel-70k-data.model' trainingDataName = 'trainingData.npy' model = alexnet2(w, h, 6) if os.path.isfile(modelName): print("File exists") model.load(modelName) epochs = 10 for i in range(epochs): data_order = [i for i in range(START_NUMBER, hm_data + 1)] shuffle(data_order) for i in data_order: trainData = np.load(trainingDataName) df = pd.DataFrame(trainData) df = df.iloc[np.random.permutation(len(df))]