def check_blocks(_board): """Check each block. If there is only one value missing...""" if VERBOSE: print("* check_blocks") board = get_filled_cells(_board) blocks = partition.partition(board, partial(by_keys, 'band', 'stack')) for block_clan in _SORT(blocks, key=partial(by_clan_keys, 'band', 'stack')): new_possible, conflict = get_block_candidates(block_clan, board) if new_possible.is_empty: continue if new_possible.cardinality == 1: _board = get_new_board(_board, new_possible) continue if block_clan.cardinality == GRID_SIZE - 2: # Knowing that the value in conflict can't be placed in the conflict cell # ..it must go in the other... first_choice = clans.superstrict(new_possible, project(conflict, 'value')) if first_choice.cardinality == 2: # place both values _board = get_new_board(_board, first_choice) continue # Remove the first choice for all_possible remaining_possible = sets.minus(new_possible, first_choice) # Knowing that first_choice goes in a row/col, remove other value from that cell first_rowcol = project(first_choice, 'row', 'col') # The remaining cell is the second choice second_choice = sets.minus(remaining_possible, clans.superstrict(remaining_possible, first_rowcol)) new_cells = sets.union(first_choice, second_choice) _board = get_new_board(_board, new_cells) continue # Partition by value candidates = partition.partition(new_possible, partial(by_key, 'value')) for candidate in _SORT(candidates, key=partial(by_clan_key, 'value')): # If any value fits in only 1 cell, place it if candidate.cardinality == 1: # Remove band/stack new_cell = project(candidate, 'row', 'col', 'value') _board = get_new_board(_board, new_cell) return _board
def fill_lefts(rel: 'P(M x M)', renames: 'P(M x M)', _checked=True) -> 'P(M x M)': r"""Return the left components in ``rel`` that are missing in ``renames`` as a diagonal unioned with ``renames``. The purpose is to create a :term:`relation` that can be used with the :term:`composition` operation to change (rename) one or more :term:`left component`\s and leave the rest alone. :param rel: The :term:`relation` that provides the full :term:`left set`. :param renames: A relation where the :term:`right component`\s are meant to be :term:`composition` 'origins' and the :term:`left component`\s composition 'targets'. :return: A relation that contains all members of ``renames`` unioned with a :term:`diagonal` that consists of all left components in ``rel`` that are missing in ``renames``. """ if _checked: if not is_member(rel): return _undef.make_or_raise_undef2(rel) if not is_member(renames): return _undef.make_or_raise_undef2(renames) else: assert is_member_or_undef(rel) assert is_member_or_undef(renames) if rel is _undef.Undef() or renames is _undef.Undef(): return _undef.make_or_raise_undef(2) missing_lefts = _sets.minus(get_lefts(rel, _checked=False), get_rights(renames, _checked=False), _checked=False) diag_missing_lefts = diag(*missing_lefts, _checked=False) result = _sets.union(renames, diag_missing_lefts, _checked=False) assert result.cached_is_relation return result
def check_values(_board): """Look for values where only one is missing. If there is only one missing, then there is only one cell where adding the value would not cause a duplicate in a row or column. Fill in those cells if they exist.""" if verbose: print("* check_values") board = get_filled_cells(_board) new_cells = Set() value_clans = partition.partition(board, partial(by_key, 'value')) for value_clan in _sort(value_clans, key=partial(by_clan_key, 'value')): # If there is only 1 missing value..fill in the cell if value_clan.cardinality == GRID_SIZE-1: # Get the set of rows and cols containing value occupied_rows = project(value_clan, 'row') occupied_cols = project(value_clan, 'col') # Get the entire set of rows and cols based on the occupied rows and cols occupied = clans.superstrict(_board, sets.union(occupied_rows, occupied_cols)) # Remove all occupied rows to get the only candidate row_col left row_col = sets.minus(_board, occupied) value = project(value_clan, 'value') new_cells = sets.union(new_cells, clans.cross_union(row_col, value)) if new_cells: return get_new_board(_board, new_cells) return _board
def check_values(_board): """Look for values where only one is missing. If there is only one missing, then there is only one cell where adding the value would not cause a duplicate in a row or column. Fill in those cells if they exist.""" if VERBOSE: print("* check_values") board = get_filled_cells(_board) new_cells = Set() value_clans = partition.partition(board, partial(by_key, 'value')) for value_clan in _SORT(value_clans, key=partial(by_clan_key, 'value')): # If there is only 1 missing value..fill in the cell if value_clan.cardinality == GRID_SIZE - 1: # Get the set of rows and cols containing value occupied_rows = project(value_clan, 'row') occupied_cols = project(value_clan, 'col') # Get the entire set of rows and cols based on the occupied rows and cols occupied = clans.superstrict(_board, sets.union(occupied_rows, occupied_cols)) # Remove all occupied rows to get the only candidate row_col left row_col = sets.minus(_board, occupied) value = project(value_clan, 'value') new_cells = sets.union(new_cells, clans.cross_union(row_col, value)) if new_cells: return get_new_board(_board, new_cells) return _board
def get_missing_rowcols(block_clan): band, stack = by_clan_keys('band', 'stack', block_clan) # Get block defined by band, stack full_block_clan = clans.superstrict(BANDS_STACKS, clans.from_dict({'band': band, 'stack': stack})) # Get missing rows/cols from the block target_rowcols = sets.minus(project(full_block_clan, 'row', 'col'), project(block_clan, 'row', 'col')) return target_rowcols
def get_new_board(board, new_cells): if verbose: for cell in new_cells: row = cell('row').value col = cell('col').value value = cell('value').value print("*** value %d goes in Row %d, Col %d" % (value, row, col)) cell_filter = project(new_cells, 'row', 'col') old_cells = clans.superstrict(board, cell_filter) new_board = sets.minus(board, old_cells) bands_stacks = clans.superstrict(BANDS_STACKS, cell_filter) new_cells = clans.functional_cross_union(new_cells, bands_stacks) new_board = sets.union(new_board, new_cells) # if verbose: # print(get_string(new_board)) assert len(new_board) == GRID_SIZE*GRID_SIZE return new_board
def fill_lefts(rel: 'P(M x M)', renames: 'P(M x M)', _checked=True) -> 'P(M x M)': """Return the left components in ``rel`` that are missing in ``renames`` as a diagonal unioned with ``renames``. :param rel: The :term:`relation` that provides the full :term:`left set`. :param renames: A relation where the :term:`right component`\s are meant to be :term:`composition` 'origins' and the :term:`left component`\s composition 'targets'. :return: A relation that contains all members of ``lefts`` unioned with a :term:`diagonal` that consists of all left components in ``rel`` that are missing in ``lefts``. """ if _checked: if not is_member(rel): return _make_or_raise_undef() if not is_member(renames): return _make_or_raise_undef() else: assert is_member(rel) assert is_member(renames) missing_lefts = _sets.minus(get_lefts(rel, _checked=False), get_rights(renames, _checked=False), _checked=False) diag_missing_lefts = diag(*missing_lefts) return _sets.union(renames, diag_missing_lefts, _checked=False).cache_is_relation(True)
def get_new_board(board, new_cells): if VERBOSE: for cell in new_cells: row = cell('row').value col = cell('col').value value = cell('value').value print("*** value %d goes in Row %d, Col %d" % (value, row, col)) cell_filter = project(new_cells, 'row', 'col') old_cells = clans.superstrict(board, cell_filter) new_board = sets.minus(board, old_cells) band = new_cells['band'] if not band: # print("missing band") bands_stacks = clans.superstrict(BANDS_STACKS, cell_filter) new_cells = clans.cross_functional_union(new_cells, bands_stacks) new_board = sets.union(new_board, new_cells) # if VERBOSE: # print(get_string(new_board)) assert len(new_board) == GRID_SIZE * GRID_SIZE return new_board
def get_block_candidates(block_clan, board): # Get the set of missing values...see if any can be placed due to row/col information values_clan = get_missing_values(block_clan) # Get the set of missing values...see if any can be placed due to row/col information target_rowcols = get_missing_rowcols(block_clan) if block_clan.cardinality == GRID_SIZE - 1: new_cells = clans.cross_union(target_rowcols, values_clan) return new_cells, Set() # Need cross union values with rows rows_clan = project(target_rowcols, 'row') cols_clan = project(target_rowcols, 'col') possible_rows_values = clans.cross_union(values_clan, rows_clan) possible_cols_values = clans.cross_union(values_clan, cols_clan) possible_rows_cols_values = sets.union(possible_rows_values, possible_cols_values) # The occupied_clan is the row/col/value set that is a conflict for values occupied_clan = clans.superstrict(board, possible_rows_cols_values) # If there are no conflicts then no cells can be placed if occupied_clan.is_empty: return Set(), Set() all_possible = clans.cross_union(values_clan, target_rowcols).cache_functional(CacheStatus.IS) # Get the set of conflicts...conflicting row/value + col/value conflict = sets.union( clans.superstrict(all_possible, project(occupied_clan, 'value', 'col')), clans.superstrict(all_possible, project(occupied_clan, 'value', 'row'))) # Remove the conflicts from all_possible new_possible = sets.minus(all_possible, conflict) return new_possible, conflict
def check_blocks(_board): """Check each block. If there is only one value missing...""" if verbose: print("* check_blocks") board = get_filled_cells(_board) blocks = partition.partition(board, partial(by_keys, 'band', 'stack')) for block_clan in _sort(blocks, key=partial(by_clan_keys, 'band', 'stack')): # Get the set of missing values...see if any can be placed due to row/col information values_clan = get_missing_values(block_clan) # Get the set of missing values...see if any can be placed due to row/col information target_rowcols = get_missing_rowcols(block_clan) if block_clan.cardinality == GRID_SIZE-1: new_cells = clans.cross_union(target_rowcols, values_clan) _board = get_new_board(_board, new_cells) continue # Need cross union values with rows rows_clan = project(target_rowcols, 'row') cols_clan = project(target_rowcols, 'col') possible_rows_values = clans.cross_union(values_clan, rows_clan) possible_cols_values = clans.cross_union(values_clan, cols_clan) possible_rows_cols_values = sets.union(possible_rows_values, possible_cols_values) # The occupied_clan is the row/col/value set that is a conflict for values occupied_clan = project(clans.superstrict(board, possible_rows_cols_values), 'value', 'row', 'col') # If there are no conflicts then no cells can be placed if occupied_clan.is_empty: continue all_possible = clans.cross_union(values_clan, target_rowcols).cache_is_left_functional(True) for rel in all_possible: rel.cache_is_left_functional(True) # Get the set of conflicts...conflicting row/value + col/value conflict = sets.union( clans.superstrict(all_possible, project(occupied_clan, 'value', 'col')), clans.superstrict(all_possible, project(occupied_clan, 'value', 'row'))) # Remove the conflicts from all_possible new_possible = sets.minus(all_possible, conflict) if block_clan.cardinality == GRID_SIZE-2: # Knowing that the value in conflict can't be placed in the conflict cell # ..it must go in the other... first_choice = clans.superstrict(new_possible, project(conflict, 'value')) if first_choice.cardinality == 2: # place both values _board = get_new_board(_board, first_choice) continue # Remove the first choice for all_possible remaining_possible = sets.minus(new_possible, first_choice) # Knowing that first_choice goes in a row/col, remove other value from that cell first_rowcol = project(first_choice, 'row', 'col') # The remaining cell is the second choice second_choice = sets.minus(remaining_possible, clans.superstrict(remaining_possible, first_rowcol)) new_cells = sets.union(first_choice, second_choice) _board = get_new_board(_board, new_cells) continue # Partition by value candidates = partition.partition(new_possible, partial(by_key, 'value')) for candidate in _sort(candidates, key=partial(by_clan_key, 'value')): # If any value fits in only 1 cell, place it if candidate.cardinality == 1: # Remove band/stack new_cell = project(candidate, 'row', 'col', 'value') _board = get_new_board(_board, new_cell) return _board
def check_rows(_board): """Look for rows where there is only one missing value. If any are found fill in the missing value. Look for rows where there are two missing values. If either missing value is blocked by the same value in the candidate row, col, or block then the other value can be placed in the blocked cell. The other value can be placed in the other cell. Look for rows with more than two missing values. Check each empty cell to see only one of the missing values can be placed in it. Check each value to see if there is only one cell where it can be placed.""" if verbose: print("* check_rows") board = get_filled_cells(_board) all_rows_clans = partition.partition(board, partial(by_key, 'row')) for row_clan in _sort(all_rows_clans, key=partial(by_clan_key, 'row')): row = project(row_clan, 'row') board_row = clans.superstrict(_board, row) values_clan = get_missing_values(row_clan) if row_clan.cardinality == GRID_SIZE-1: # Row is missing only 1 value, remove row_clan from the board leaving target row_col row_col = sets.minus(board_row, row_clan) new_cells = clans.cross_union(row_col, values_clan) _board = get_new_board(_board, new_cells) continue # Get the set of candidate col/value pairs row_possible = clans.cross_union(values_clan, project(sets.minus(board_row, row_clan), 'col')) if row_clan.cardinality == GRID_SIZE-2: # The occupied_clan is the col/value pair that is a conflict for each col/value occupied_clan = project(clans.superstrict(board, row_possible), 'col', 'value') # If there are no conflicts neither value can be placed without checking entire board if not occupied_clan.is_empty: # ..remove occupied_clan col/value pairs from all possible new_possible = sets.minus(row_possible, occupied_clan) if new_possible.cardinality == 2: # Of the 4 possibilities (2 values * 2 cols), 2 were removed, place remaining new_cells = clans.cross_union(row, new_possible) _board = get_new_board(_board, new_cells) continue # 3 of the possibilities remain... occupied_col = project(occupied_clan, 'col') # Remove the occupied_col choices to get the first col/value pair col_value1 = clans.superstrict(new_possible, occupied_col) occupied_val = project(col_value1, 'value') # Remove the occupied_val choices to get the second col/value pair col_value2 = sets.minus(new_possible, clans.superstrict(new_possible, occupied_val)) new_cells = clans.cross_union(row, col_value1) new_cells = sets.union(new_cells, clans.cross_union(row, col_value2)) _board = get_new_board(_board, new_cells) continue # The occupied_clan is the row/col/value set that could be a conflict for values occupied_clan = clans.superstrict(board, values_clan) # If there are no conflicts then no cells can be placed if occupied_clan.is_empty: continue # Add row to row_possible for remaining checks all_possible = clans.cross_union(row_possible, row) # Get the set of conflicts...conflicting row/value + col/value conflict = sets.union( clans.superstrict(all_possible, project(occupied_clan, 'value', 'col')), clans.superstrict(all_possible, project(occupied_clan, 'value', 'row'))) # Remove the conflicts from all_possible new_possible = sets.minus(all_possible, conflict) if new_possible.is_empty: continue # All possible may have been excluded due to row/col conflicts # Otherwise...need to check for block (band+stack) conflicts too!! # ...if value exists in same block as element of all_possible # Add band/stack new_targets = clans.superstrict(BANDS_STACKS, project(new_possible, 'row', 'col')) new_possible3 = clans.functional_cross_union(new_targets, new_possible) occupied_clan2 = occupied_clan # Remove block (band+stack) conflicts new_possible4a = sets.minus(project(new_possible3, 'value', 'band', 'stack'), project(occupied_clan2, 'value', 'band', 'stack')) new_possible4 = clans.superstrict(new_possible3, new_possible4a) # Partition by row/col placed = 0 candidates = partition.partition(new_possible4, partial(by_keys, 'row', 'col')) for candidate in _sort(candidates, key=partial(by_clan_key, 'col')): # If any row/col has only 1 candidate, place it if candidate.cardinality == 1: # Remove band/stack cell = project(candidate, 'row', 'col', 'value') _board = get_new_board(_board, cell) placed += 1 if placed: continue # Partition by value candidates = partition.partition(new_possible4, partial(by_key, 'value')) for candidate in _sort(candidates, key=partial(by_clan_key, 'value')): # If any value fits in only 1 cell, place it if candidate.cardinality == 1: # Remove band/stack cell = project(candidate, 'row', 'col', 'value') _board = get_new_board(_board, cell) return _board
def get_missing_values(clan): """Get remaining values from passed in clan by subtracting it from from all possible values.""" values_clan = project(clan, 'value') return sets.minus(BLOCK_VALUES_CLAN, values_clan)
def check_rows(_board, try_harder=0): """Look for rows where there is only one missing value. If any are found fill in the missing value. Look for rows where there are two missing values. If either missing value is blocked by the same value in the candidate row, col, or block then the other value can be placed in the blocked cell. The other value can be placed in the other cell. Look for rows with more than two missing values. Check each empty cell to see only one of the missing values can be placed in it. Check each value to see if there is only one cell where it can be placed.""" if VERBOSE: print("* check_rows") board = get_filled_cells(_board) all_rows_clans = partition.partition(board, partial(by_key, 'row')) for row_clan in _SORT(all_rows_clans, key=partial(by_clan_key, 'row')): row = project(row_clan, 'row') board_row = clans.superstrict(_board, row) values_clan = get_missing_values(row_clan) if row_clan.cardinality == GRID_SIZE - 1: # Row is missing only 1 value, remove row_clan from the board leaving target row_col row_col = sets.minus(board_row, row_clan) new_cells = clans.cross_union(row_col, values_clan) _board = get_new_board(_board, new_cells) try_harder = 0 continue # Get the set of candidate col/value pairs row_possible = clans.cross_union(values_clan, project(sets.minus(board_row, row_clan), 'col')) if row_clan.cardinality == GRID_SIZE - 2: # The occupied_clan is the col/value pair that is a conflict for each col/value occupied_clan = project(clans.superstrict(board, row_possible), 'col', 'value') # If there are no conflicts neither value can be placed without checking entire board if not occupied_clan.is_empty: # ..remove occupied_clan col/value pairs from all possible new_possible = sets.minus(row_possible, occupied_clan) if new_possible.cardinality == 2: # Of the 4 possibilities (2 values * 2 cols), 2 were removed, place remaining new_cells = clans.cross_union(row, new_possible) _board = get_new_board(_board, new_cells) try_harder = 0 continue # 3 of the possibilities remain... occupied_col = project(occupied_clan, 'col') # Remove the occupied_col choices to get the first col/value pair col_value1 = clans.superstrict(new_possible, occupied_col) occupied_val = project(col_value1, 'value') # Remove the occupied_val choices to get the second col/value pair col_value2 = sets.minus(new_possible, clans.superstrict(new_possible, occupied_val)) new_cells = clans.cross_union(row, col_value1) new_cells = sets.union(new_cells, clans.cross_union(row, col_value2)) _board = get_new_board(_board, new_cells) try_harder = 0 continue # The occupied_clan is the row/col/value set that could be a conflict for values occupied_clan = clans.superstrict(board, values_clan) # If there are no conflicts then no cells can be placed if occupied_clan.is_empty: continue # Add row to row_possible for remaining checks all_possible = clans.cross_union(row_possible, row) # Get the set of conflicts...conflicting row/value + col/value conflict = sets.union( clans.superstrict(all_possible, project(occupied_clan, 'value', 'col')), clans.superstrict(all_possible, project(occupied_clan, 'value', 'row'))) # Remove the conflicts from all_possible new_possible = sets.minus(all_possible, conflict) if new_possible.is_empty: continue # All possible may have been excluded due to row/col conflicts # Otherwise...need to check for block (band+stack) conflicts too!! # ...if value exists in same block as element of all_possible # Add band/stack new_targets = clans.superstrict(BANDS_STACKS, project(new_possible, 'row', 'col')) new_possible3 = clans.cross_functional_union(new_targets, new_possible) occupied_clan2 = occupied_clan # Remove block (band+stack) conflicts new_possible4a = sets.minus(project(new_possible3, 'value', 'band', 'stack'), project(occupied_clan2, 'value', 'band', 'stack')) new_possible4 = clans.superstrict(new_possible3, new_possible4a) while True: candidates_updated = False # Partition by row/col placed = 0 candidates = partition.partition(new_possible4, partial(by_keys, 'row', 'col')) for candidate in _SORT(candidates, key=partial(by_clan_key, 'col')): # If any row/col has only 1 candidate, place it if candidate.cardinality == 1: # Remove band/stack _board = get_new_board(_board, candidate) try_harder = 0 placed += 1 if placed: break # Partition by value candidates = partition.partition(new_possible4, partial(by_key, 'value')) for candidate in _SORT(candidates, key=partial(by_clan_key, 'value')): # If any value fits in only 1 cell, place it if candidate.cardinality == 1: # Remove band/stack _board = get_new_board(_board, candidate) try_harder = 0 else: # If any value must be placed elsewhere, remove as candidate for this cell if try_harder: value = project(candidate, 'value') # If this row of a sibling block must contain this value... blocks = partition.partition(candidate, partial(by_keys, 'band', 'stack')) if blocks.cardinality > 1: for block_clan in _SORT(blocks, key=partial(by_clan_keys, 'band', 'stack')): block = project(block_clan, 'band', 'stack') board_block = clans.superstrict(board, block) if board_block.is_empty: continue new_possible, conflict = get_block_candidates(board_block, board) new_possible_value = clans.superstrict(new_possible, value) if new_possible_value['row'].cardinality == 1: # Value must be placed in this block # ...other block candidates can be removed remove = sets.minus(candidate, block_clan) new_possible4 = sets.minus(new_possible4, remove) candidates_updated = True if not candidates_updated or not try_harder: break return _board
def test_minus(self): self._check_wrong_argument_types_binary(minus) result = minus(_set1, _set2) self.assertEqual(result, _set1m2)
nums = Set(1, 2, 3, 4, 5) for elem in nums: print(elem, " ") print(1 in nums) print(7 in nums) # Sets can be unioned, intersected, set-minused. Relations such as is_subset and is_superset are # defined. a = Set(1, 2) b = Set(2, 3) import algebraixlib.algebras.sets as sets print("union(a, b) = {}".format(sets.union(a, b))) print("intersect(a, b) = {}".format(sets.intersect(a, b))) print("minus(a, b) = {}".format(sets.minus(a, b))) print("is_subset(a, b) = {}".format(sets.is_subset_of(a, b))) print("is_superset(a, {{1}}) = {}".format(sets.is_superset_of(a, Set(1)))) # We can use a Couplet to model a single truth, such as 'sky'->'blue' or 'name'->'jeff'. By # collecting multiple Couplets together in a set, we form a mathematical model of a data record. # This data structure, called a binary relation (abbreviated from hereon as simply 'relation'), is # the fundamental data type in a Data Algebra program. record_relation = Set(Couplet('id', 123), Couplet('name', 'jeff'), Couplet('loves', 'math'), Couplet('loves', 'code')) print(record_relation) # Some relations, specify a function from left to right. This is the case when every left # value maps to exactly one right value. Such a relation is called "left functional". # Likewise, a relation can be said to be "right functional" when every right value maps # to exactly one left value.
nums = Set(1, 2, 3, 4, 5) for elem in nums: print(elem, " ") print(1 in nums) print(7 in nums) # Sets can be unioned, intersected, set-minused. Relations such as is_subset and is_superset are # defined. a = Set(1, 2) b = Set(2, 3) import algebraixlib.algebras.sets as sets print("union(a, b) = {}".format(sets.union(a, b))) print("intersect(a, b) = {}".format(sets.intersect(a, b))) print("minus(a, b) = {}".format(sets.minus(a, b))) print("is_subset(a, b) = {}".format(sets.is_subset_of(a, b))) print("is_superset(a, {{1}}) = {}".format(sets.is_superset_of(a, Set(1)))) # We can use a Couplet to model a single truth, such as 'blue'^'sky' or 'jeff'^'name'. By collecting # multiple Couplets together in a set, we form a mathematical model of a data record. This data # structure, called a binary relation (abbreviated from hereon as simply 'relation'), is the # fundamental data type in a Data Algebra program. record_relation = Set(Couplet('id', 123), Couplet('name', 'jeff'), Couplet('loves', 'math'), Couplet('loves', 'code')) print(record_relation) # Some relations, specify a function from left to right. This is the case when every left # value maps to exactly one right value. Such a relation is called "left functional". # Likewise, a relation can be said to be "right functional" when every right value maps # to exactly one left value.