예제 #1
0
    def __init__(self,
                 min_instances_slice=50,
                 min_features_slice=0,
                 alpha=0.001,
                 row_cluster_method='KMeans',
                 ind_test_method="pairwise_treeglm",
                 sub_sample_rows=1000,
                 cluster_penalty=2.0,
                 n_cluster_splits=2,
                 n_iters=1000,
                 n_restarts=2,
                 sklearn_args={},
                 cltree_leaves=False,
                 poisson_leaves=True,
                 rand_gen=None,
                 cluster_prep_method="sqrt",
                 family="poisson",
                 cluster_first=True,
                 cache=None):
        """
        WRITEME
        """
        self._min_instances_slice = min_instances_slice
        self._min_features_slice = min_features_slice
        self._alpha = alpha
        self._row_cluster_method = row_cluster_method
        self._ind_test_method = ind_test_method
        self._cluster_penalty = cluster_penalty
        self._n_cluster_splits = n_cluster_splits
        self._n_iters = n_iters
        self._n_restarts = n_restarts
        self._sklearn_args = sklearn_args
        self._cltree_leaves = cltree_leaves
        self.poisson_leaves = poisson_leaves
        self._cluster_prep_method = cluster_prep_method
        self.family = family
        self._sub_sample_rows = sub_sample_rows

        self._cluster_first = cluster_first

        self._rand_gen = rand_gen if rand_gen is not None \
            else numpy.random.RandomState(RND_SEED)

        if cache is not None:
            self.fit_structure = cache.cache(self.fit_structure)

        self.config = {
            "min_instances": min_instances_slice,
            "alpha": alpha,
            "cluster_method": row_cluster_method,
            "cluster_n_clusters": n_cluster_splits,
            "cluster_iters": n_iters,
            "cluster_prep_method": cluster_prep_method,
            "family": self.family
        }

        #
        # resetting the data slice ids (just in case)
        DataSlice.reset_id_counter()
예제 #2
0
def test_whole_slice():
    n_cols = 15
    n_rows = 10
    data_slice = DataSlice.whole_slice(n_rows, n_cols)

    assert data_slice.id == 0
    row_ids_t = data_slice.instance_ids == [i for i in range(n_rows)]
    print(data_slice.instance_ids, row_ids_t, numpy.all(row_ids_t))
    assert numpy.all(row_ids_t)
    assert (data_slice.feature_ids == [i for i in range(n_cols)]).all()
예제 #3
0
def test_greedy_feature_split():

    # on synthetic data first
    g_factor = 2
    s_instance_ids = numpy.array([0, 2, 8, 4, 3])
    s_feature_ids = numpy.array([2, 1, 4, 0, 3])

    data_slice = DataSlice(s_instance_ids, s_feature_ids)

    feat_comp_1, feat_comp_2 = algo.learnspn.greedy_feature_split(
        data, data_slice, feature_vals, g_factor, rand_gen)
    print(feat_comp_1, feat_comp_2)
    assert set(
        list(s_feature_ids)) == set(list(feat_comp_1) + list(feat_comp_2))

    #
    # loading the dataset (using only the training portion)
    dataset_name = 'nltcs'
    print('Loading dataset', dataset_name)
    train, valid, test = dataset.load_train_val_test_csvs(dataset_name)
예제 #4
0
def estimate_kernel_density_spn(data_slice, feature_sizes, data, alpha,
                                node_id_assoc, building_stack,
                                slices_to_process):
    """
    A mixture with one component for each instance
    """

    instance_ids = data_slice.instance_ids
    feature_ids = data_slice.feature_ids
    current_id = data_slice.id

    n_instances = len(instance_ids)
    n_features = len(feature_ids)

    logging.info('Adding a kernel density estimation ' +
                 'over a slice {0} X {1}'.format(n_instances, n_features))

    #
    # create sum node
    root_sum_node = SumNode(var_scope=frozenset(feature_ids))

    data_slice.type = SumNode
    building_stack.append(data_slice)

    root_sum_node.id = current_id
    node_id_assoc[current_id] = root_sum_node

    #
    # for each instance
    for i in instance_ids:
        #
        # create a slice
        instance_slice = DataSlice(numpy.array([i]), feature_ids)
        slices_to_process.append(instance_slice)
        #
        # linking with appropriate weight
        data_slice.add_child(instance_slice, 1.0 / n_instances)

    return root_sum_node, node_id_assoc, building_stack, slices_to_process
예제 #5
0
    def make_naive_factorization(self, current_slice, slices_to_process,
                                 building_stack, node_id_assoc):

        logging.info('into a naive factorization')

        #
        # retrieving info from current slice
        current_instances = current_slice.instance_ids
        current_features = current_slice.feature_ids
        current_id = current_slice.id

        #
        # putting them in queue
        child_slices = [
            DataSlice(current_instances, [feature_id])
            for feature_id in current_features
        ]
        slices_to_process.extend(child_slices)

        children_ids = [child.id for child in child_slices]

        #
        # storing the children links
        for child_slice in child_slices:
            current_slice.add_child(child_slice)
        current_slice.type = ProductNode
        building_stack.append(current_slice)

        #
        # creating the product node
        prod_node = ProductNode(var_scope=frozenset(current_features))
        prod_node.id = current_id

        node_id_assoc[current_id] = prod_node
        logging.debug('\tCreated Prod Node %s (with children %s)', prod_node,
                      children_ids)

        return current_slice, slices_to_process, building_stack, node_id_assoc
예제 #6
0
    def fit_structure(self, data):

        #
        # a queue containing the data slices to process
        slices_to_process = deque()

        # a stack for building nodes
        building_stack = deque()

        # a dict to keep track of id->nodes
        node_id_assoc = {}

        # creating the first slice
        whole_slice = DataSlice.whole_slice(data.shape[0], data.shape[1])
        slices_to_process.append(whole_slice)

        cluster_first = self._cluster_first

        #
        # iteratively process & split slices
        #
        while slices_to_process:

            # process a slice
            current_slice = slices_to_process.popleft()

            # pointers to the current data slice
            current_instances = current_slice.instance_ids
            current_features = current_slice.feature_ids
            current_id = current_slice.id

            n_features = len(current_features)

            #             if n_features > 1:
            # #                 # print("removing Zeros")
            #                 datarowsIdx = numpy.sum(data[current_instances, :][:, current_features], 1) > 0
            #                 if not any(datarowsIdx):
            #                     datarowsIdx[0] = True
            #                 current_instances = current_slice.instance_ids[datarowsIdx]

            n_instances = len(current_instances)

            #             if n_instances == 0:
            #                 #too strong cutting the zeroes
            #                 current_instances = [current_slice.instance_ids[0]]
            #                 n_instances = len(current_instances)

            slice_data_rows = data[current_instances, :]
            current_slice_data = slice_data_rows[:, current_features]

            # is this a leaf node or we can split?
            if n_features == 1 and (current_slice.doNotCluster or
                                    n_instances <= self._min_instances_slice):

                (feature_id, ) = current_features

                if self.family == "poisson":
                    leaf_node = PoissonNode(data, current_instances,
                                            current_features)
                elif self.family == "gaussian":
                    leaf_node = GaussianNode(data, current_instances,
                                             current_features)

                # storing links
                # input_nodes.append(leaf_node)
                leaf_node.id = current_id
                node_id_assoc[current_id] = leaf_node

            # elif (current_slice_data.shape[0] < self._min_instances_slice):
            # elif ( (n_instances <= self._min_instances_slice and n_features > 1) and current_slice_data.shape[0]  < self._min_instances_slice):
            # elif ((n_instances <= self._min_instances_slice and n_features > 1)):
            elif n_features > 1 and (current_slice.doNotCluster or
                                     n_instances <= self._min_instances_slice):

                # print('into naive factorization')
                child_slices = [
                    DataSlice(current_instances, [feature_id])
                    for feature_id in current_features
                ]
                slices_to_process.extend(child_slices)

                #children_ids = [child.id for child in child_slices]

                for child_slice in child_slices:
                    child_slice.doNotCluster = current_slice.doNotCluster
                    current_slice.add_child(child_slice)
                current_slice.type = ProductNode
                building_stack.append(current_slice)

                prod_node = ProductNode(data, current_instances,
                                        current_features)
                prod_node.id = current_id

                node_id_assoc[current_id] = prod_node

            else:

                split_on_features = False

                # first_run = False
                #
                # first run is a split on rows
                if n_features == 1 or cluster_first:
                    cluster_first = False
                else:

                    if self._ind_test_method == "pairwise_treeglm" or self._ind_test_method == "subsample":

                        fcdata = current_slice_data

                        if self._ind_test_method == "subsample":
                            #sampled_rows = 2000
                            #sampled_rows = math.floor(current_slice_data.shape[0]*10/100)
                            sampled_rows = self._sub_sample_rows
                            if sampled_rows < current_slice_data.shape[0]:
                                fcdata = current_slice_data[
                                    numpy.random.choice(
                                        current_slice_data.shape[0],
                                        sampled_rows,
                                        replace=False)]
                            else:
                                fcdata = current_slice_data

                        #Using R
                        #from pdn.independenceptest import getIndependentGroups
                        #feature_clusters = retrieve_clustering(getIndependentGroups(fcdata, alpha=self._alpha, family=self.family), current_features)
                        feature_clusters = retrieve_clustering(
                            getIndependentGroupsStabilityTest(
                                fcdata, alpha=self._alpha), current_features)
                    elif self._ind_test_method == "KMeans":

                        feature_clusters = retrieve_clustering(
                            cluster_rows(
                                (data[current_instances, :][:,
                                                            current_features]
                                 ).T,
                                n_clusters=2,
                                cluster_method=self._row_cluster_method,
                                n_iters=self._n_iters,
                                n_restarts=self._n_restarts,
                                cluster_prep_method="sqrt",
                                cluster_penalty=self._cluster_penalty,
                                rand_gen=self._rand_gen,
                                sklearn_args=self._sklearn_args),
                            current_instances)

                    split_on_features = len(feature_clusters) > 1

                #
                # have dependent components been found?
                if split_on_features:
                    #
                    # splitting on columns
                    # print('---> Splitting on features')
                    # print(feature_clusters)

                    slices = [
                        DataSlice(current_instances, cluster)
                        for cluster in feature_clusters
                    ]

                    slices_to_process.extend(slices)

                    current_slice.type = ProductNode
                    building_stack.append(current_slice)
                    for child_slice in slices:
                        current_slice.add_child(child_slice)

                    prod_node = ProductNode(data, current_instances,
                                            current_features)
                    prod_node.id = current_id
                    node_id_assoc[current_id] = prod_node

                else:
                    # print('---> Splitting on rows')

                    k_row_clusters = min(self._n_cluster_splits,
                                         n_instances - 1)

                    if n_features == 1:
                        # do one kmeans run with K large enough to split into N min instances
                        k_row_clusters = math.floor(
                            n_instances / self._min_instances_slice) + 1
                        k_row_clusters = min(k_row_clusters, n_instances - 1)

                    clustering = retrieve_clustering(
                        cluster_rows(
                            data[current_instances, :][:, current_features],
                            n_clusters=k_row_clusters,
                            cluster_method=self._row_cluster_method,
                            n_iters=self._n_iters,
                            n_restarts=self._n_restarts,
                            cluster_prep_method=self._cluster_prep_method,
                            cluster_penalty=self._cluster_penalty,
                            rand_gen=self._rand_gen,
                            sklearn_args=self._sklearn_args),
                        current_instances)

                    cluster_slices = [
                        DataSlice(cluster, current_features)
                        for cluster in clustering
                    ]

                    if len(clustering) < k_row_clusters:
                        for cluster_slice in cluster_slices:
                            cluster_slice.doNotCluster = True

                    n_instances_clusters = sum(
                        [len(cluster) for cluster in clustering])
                    cluster_weights = [
                        len(cluster) / n_instances_clusters
                        for cluster in clustering
                    ]

                    slices_to_process.extend(cluster_slices)

                    current_slice.type = SumNode
                    building_stack.append(current_slice)
                    for child_slice, child_weight in zip(
                            cluster_slices, cluster_weights):
                        current_slice.add_child(child_slice, child_weight)

                    sum_node = SumNode(data, current_instances,
                                       current_features)
                    sum_node.id = current_id
                    node_id_assoc[current_id] = sum_node

        root_node = SpnFactory.pruned_spn_from_slices(node_id_assoc,
                                                      building_stack, True)

        spn = SpnFactory.layered_linked_spn(root_node, data, self.config)

        return spn
예제 #7
0
def test_pruned_spn_from_slices():
    #
    # creating all the data slices
    # the slicing is a fake stub
    rows = 5
    cols = 5
    var = 1
    values = 2

    node_assoc = {}
    building_stack = deque()

    slice_1 = DataSlice.whole_slice(rows, cols)
    slice_1.type = SumNode
    node_1 = SumNode()
    node_1.id = slice_1.id
    node_assoc[node_1.id] = node_1
    building_stack.append(slice_1)

    slice_2 = DataSlice.whole_slice(rows, cols)
    slice_2.type = ProductNode
    node_2 = ProductNode()
    node_2.id = slice_2.id
    node_assoc[node_2.id] = node_2
    building_stack.append(slice_2)

    slice_3 = DataSlice.whole_slice(rows, cols)
    slice_3.type = SumNode
    node_3 = SumNode()
    node_3.id = slice_3.id
    node_assoc[node_3.id] = node_3
    building_stack.append(slice_3)

    # adding first level
    slice_1.add_child(slice_2, 0.8)
    slice_1.add_child(slice_3, 0.2)

    slice_4 = DataSlice.whole_slice(rows, cols)
    slice_4.type = ProductNode
    node_4 = ProductNode()
    node_4.id = slice_4.id
    node_assoc[node_4.id] = node_4
    building_stack.append(slice_4)

    leaf_5 = CategoricalSmoothedNode(var,
                                     values)
    slice_5 = DataSlice.whole_slice(rows, cols)
    leaf_5.id = slice_5.id
    node_assoc[leaf_5.id] = leaf_5
    # not adding the slice to the stack

    slice_2.add_child(slice_4)
    slice_2.add_child(slice_5)

    slice_6 = DataSlice.whole_slice(rows, cols)
    slice_6.type = SumNode
    node_6 = SumNode()
    node_6.id = slice_6.id
    node_assoc[node_6.id] = node_6
    building_stack.append(slice_6)

    slice_7 = DataSlice.whole_slice(rows, cols)
    slice_7.type = SumNode
    node_7 = SumNode()
    node_7.id = slice_7.id
    node_assoc[node_7.id] = node_7
    building_stack.append(slice_7)

    slice_3.add_child(slice_6, 0.4)
    slice_3.add_child(slice_7, 0.6)

    slice_8 = DataSlice.whole_slice(rows, cols)
    slice_8.type = ProductNode
    node_8 = ProductNode()
    node_8.id = slice_8.id
    node_assoc[node_8.id] = node_8
    building_stack.append(slice_8)

    leaf_15 = CategoricalSmoothedNode(var,
                                      values)
    slice_15 = DataSlice.whole_slice(rows, cols)
    leaf_15.id = slice_15.id
    node_assoc[leaf_15.id] = leaf_15

    slice_4.add_child(slice_8)
    slice_4.add_child(slice_15)

    leaf_13 = CategoricalSmoothedNode(var,
                                      values)
    slice_13 = DataSlice.whole_slice(rows, cols)
    leaf_13.id = slice_13.id
    node_assoc[leaf_13.id] = leaf_13

    leaf_14 = CategoricalSmoothedNode(var,
                                      values)
    slice_14 = DataSlice.whole_slice(rows, cols)
    leaf_14.id = slice_14.id
    node_assoc[leaf_14.id] = leaf_14

    slice_8.add_child(slice_13)
    slice_8.add_child(slice_14)

    slice_9 = DataSlice.whole_slice(rows, cols)
    slice_9.type = ProductNode
    node_9 = ProductNode()
    node_9.id = slice_9.id
    node_assoc[node_9.id] = node_9
    building_stack.append(slice_9)

    leaf_16 = CategoricalSmoothedNode(var,
                                      values)
    slice_16 = DataSlice.whole_slice(rows, cols)
    leaf_16.id = slice_16.id
    node_assoc[leaf_16.id] = leaf_16

    leaf_17 = CategoricalSmoothedNode(var,
                                      values)
    slice_17 = DataSlice.whole_slice(rows, cols)
    leaf_17.id = slice_17.id
    node_assoc[leaf_17.id] = leaf_17

    slice_9.add_child(slice_16)
    slice_9.add_child(slice_17)

    slice_10 = DataSlice.whole_slice(rows, cols)
    slice_10.type = ProductNode
    node_10 = ProductNode()
    node_10.id = slice_10.id
    node_assoc[node_10.id] = node_10
    building_stack.append(slice_10)

    leaf_18 = CategoricalSmoothedNode(var,
                                      values)
    slice_18 = DataSlice.whole_slice(rows, cols)
    leaf_18.id = slice_18.id
    node_assoc[leaf_18.id] = leaf_18

    leaf_19 = CategoricalSmoothedNode(var,
                                      values)
    slice_19 = DataSlice.whole_slice(rows, cols)
    leaf_19.id = slice_19.id
    node_assoc[leaf_19.id] = leaf_19

    slice_10.add_child(slice_18)
    slice_10.add_child(slice_19)

    slice_6.add_child(slice_9, 0.1)
    slice_6.add_child(slice_10, 0.9)

    slice_11 = DataSlice.whole_slice(rows, cols)
    slice_11.type = ProductNode
    node_11 = ProductNode()
    node_11.id = slice_11.id
    node_assoc[node_11.id] = node_11
    building_stack.append(slice_11)

    leaf_20 = CategoricalSmoothedNode(var,
                                      values)
    slice_20 = DataSlice.whole_slice(rows, cols)
    leaf_20.id = slice_20.id
    node_assoc[leaf_20.id] = leaf_20

    leaf_21 = CategoricalSmoothedNode(var,
                                      values)
    slice_21 = DataSlice.whole_slice(rows, cols)
    leaf_21.id = slice_21.id
    node_assoc[leaf_21.id] = leaf_21

    slice_11.add_child(slice_20)
    slice_11.add_child(slice_21)

    slice_12 = DataSlice.whole_slice(rows, cols)
    slice_12.type = ProductNode
    node_12 = ProductNode()
    node_12.id = slice_12.id
    node_assoc[node_12.id] = node_12
    building_stack.append(slice_12)

    leaf_22 = CategoricalSmoothedNode(var,
                                      values)
    slice_22 = DataSlice.whole_slice(rows, cols)
    leaf_22.id = slice_22.id
    node_assoc[leaf_22.id] = leaf_22

    leaf_23 = CategoricalSmoothedNode(var,
                                      values)
    slice_23 = DataSlice.whole_slice(rows, cols)
    leaf_23.id = slice_23.id
    node_assoc[leaf_23.id] = leaf_23

    slice_12.add_child(slice_22)
    slice_12.add_child(slice_23)

    slice_7.add_child(slice_11, 0.2)
    slice_7.add_child(slice_12, 0.7)

    root_node = SpnFactory.pruned_spn_from_slices(node_assoc,
                                                  building_stack)

    print('ROOT nODE', root_node)

    spn = SpnFactory.layered_linked_spn(root_node)

    print('SPN', spn)

    assert spn.n_layers() == 3

    for i, layer in enumerate(spn.top_down_layers()):
        if i == 0:
            assert layer.n_nodes() == 1
        elif i == 1:
            assert layer.n_nodes() == 5
        elif i == 2:
            assert layer.n_nodes() == 12
예제 #8
0
    def fit_structure(self, data, feature_sizes):
        """
        data is a numpy array of size {n_instances X n_features}
        feature_sizes is an array of integers representing feature ranges
        """

        #
        # resetting the data slice ids (just in case)
        DataSlice.reset_id_counter()

        tot_n_instances = data.shape[0]
        tot_n_features = data.shape[1]

        logging.info('Learning SPN structure on a (%d X %d) dataset',
                     tot_n_instances, tot_n_features)
        learn_start_t = perf_counter()

        #
        # a queue containing the data slices to process
        slices_to_process = deque()

        # a stack for building nodes
        building_stack = deque()

        # a dict to keep track of id->nodes
        node_id_assoc = {}

        # creating the first slice
        whole_slice = DataSlice.whole_slice(tot_n_instances, tot_n_features)
        slices_to_process.append(whole_slice)

        first_run = True

        #
        # iteratively process & split slices
        #
        while slices_to_process:

            # process a slice
            current_slice = slices_to_process.popleft()

            # pointers to the current data slice
            current_instances = current_slice.instance_ids
            current_features = current_slice.feature_ids
            current_id = current_slice.id

            n_instances = len(current_instances)
            n_features = len(current_features)

            logging.info('\n*** Processing slice %d (%d X %d)', current_id,
                         n_instances, n_features)
            logging.debug('\tinstances:%s\n\tfeatures:%s', current_instances,
                          current_features)

            #
            # is this a leaf node or we can split?
            if n_features == 1:
                logging.info('---> Adding a leaf (just one feature)')

                (feature_id, ) = current_features
                feature_size = feature_sizes[feature_id]

                # slicing from the original dataset
                slice_data_rows = data[current_instances, :]
                current_slice_data = slice_data_rows[:, current_features]

                # create the node
                leaf_node = CategoricalSmoothedNode(
                    var=feature_id,
                    var_values=feature_size,
                    data=current_slice_data,
                    instances=current_instances,
                    alpha=self._alpha)
                # print('lnvf', leaf_node._var_freqs)
                # storing links
                # input_nodes.append(leaf_node)
                leaf_node.id = current_id
                node_id_assoc[current_id] = leaf_node

                logging.debug('\tCreated Smooth Node %s', leaf_node)

            elif (n_instances <= self._min_instances_slice and n_features > 1):
                #
                # splitting the slice on each feature
                logging.info('---> Few instances (%d), decompose all features',
                             n_instances)
                #
                # shall put a cltree or
                if self._cltree_leaves:
                    logging.info('into a Chow-Liu tree')
                    #
                    # slicing data
                    slice_data_rows = data[current_instances, :]
                    current_slice_data = slice_data_rows[:, current_features]

                    current_feature_sizes = [
                        feature_sizes[i] for i in current_features
                    ]
                    #
                    # creating a Chow-Liu tree as leaf
                    leaf_node = CLTreeNode(vars=current_features,
                                           var_values=current_feature_sizes,
                                           data=current_slice_data,
                                           alpha=self._alpha)
                    #
                    # storing links
                    leaf_node.id = current_id
                    node_id_assoc[current_id] = leaf_node

                    logging.debug('\tCreated Chow-Liu Tree Node %s', leaf_node)

                elif self._kde and n_instances > 1:
                    estimate_kernel_density_spn(current_slice, feature_sizes,
                                                data, self._alpha,
                                                node_id_assoc, building_stack,
                                                slices_to_process)

                # elif n_instances == 1:  # FIXME: there is a bug here
                else:
                    current_slice, slices_to_process, building_stack, node_id_assoc = \
                        self.make_naive_factorization(current_slice,
                                                      slices_to_process,
                                                      building_stack,
                                                      node_id_assoc)
            else:

                #
                # slicing from the original dataset
                slice_data_rows = data[current_instances, :]
                current_slice_data = slice_data_rows[:, current_features]

                split_on_features = False
                #
                # first run is a split on rows
                if first_run:
                    logging.info('-- FIRST RUN --')
                    first_run = False
                else:
                    #
                    # try clustering on cols
                    # logging.debug('...trying to split on columns')
                    split_start_t = perf_counter()
                    print(data.shape)
                    dependent_features, other_features = greedy_feature_split(
                        data, current_slice, feature_sizes, self._g_factor,
                        self._rand_gen)
                    split_end_t = perf_counter()
                    logging.info('...tried to split on columns in {}'.format(
                        split_end_t - split_start_t))
                    if len(other_features) > 0:
                        split_on_features = True
                #
                # have dependent components been found?
                if split_on_features:
                    #
                    # splitting on columns
                    logging.info(
                        '---> Splitting on features' +
                        ' {} -> ({}, {})'.format(len(current_features),
                                                 len(dependent_features),
                                                 len(other_features)))

                    #
                    # creating two new data slices and putting them on queue
                    first_slice = DataSlice(current_instances,
                                            dependent_features)
                    second_slice = DataSlice(current_instances, other_features)
                    slices_to_process.append(first_slice)
                    slices_to_process.append(second_slice)

                    children_ids = [first_slice.id, second_slice.id]

                    #
                    # storing link parent children
                    current_slice.type = ProductNode
                    building_stack.append(current_slice)
                    current_slice.add_child(first_slice)
                    current_slice.add_child(second_slice)

                    #
                    # creating product node
                    prod_node = ProductNode(
                        var_scope=frozenset(current_features))
                    prod_node.id = current_id
                    node_id_assoc[current_id] = prod_node
                    logging.debug('\tCreated Prod Node %s (with children %s)',
                                  prod_node, children_ids)

                else:
                    #
                    # clustering on rows
                    logging.info('---> Splitting on rows')

                    #
                    # at most n_rows clusters, for sklearn
                    k_row_clusters = min(self._n_cluster_splits,
                                         n_instances - 1)

                    clustering = cluster_rows(
                        data,
                        current_slice,
                        n_clusters=k_row_clusters,
                        cluster_method=self._row_cluster_method,
                        n_iters=self._n_iters,
                        n_restarts=self._n_restarts,
                        cluster_penalty=self._cluster_penalty,
                        rand_gen=self._rand_gen,
                        sklearn_args=self._sklearn_args)

                    if len(clustering) < 2:
                        logging.info('\n\n\nLess than 2 clusters\n\n (%d)',
                                     len(clustering))

                        logging.info('forcing a naive factorization')
                        current_slice, slices_to_process, building_stack, node_id_assoc = \
                            self.make_naive_factorization(current_slice,
                                                          slices_to_process,
                                                          building_stack,
                                                          node_id_assoc)

                    else:
                        # logging.debug('obtained clustering %s', clustering)
                        logging.info('clustered into %d parts (min %d)',
                                     len(clustering), k_row_clusters)
                        # splitting
                        cluster_slices = [
                            DataSlice(cluster, current_features)
                            for cluster in clustering
                        ]
                        cluster_slices_ids = [
                            slice.id for slice in cluster_slices
                        ]

                        # cluster_prior = 5.0
                        # cluster_weights = [(slice.n_instances() + cluster_prior) /
                        #                    (n_instances + cluster_prior * len(cluster_slices))
                        #                    for slice in cluster_slices]
                        cluster_weights = [
                            slice.n_instances() / n_instances
                            for slice in cluster_slices
                        ]

                        #
                        # appending for processing
                        slices_to_process.extend(cluster_slices)

                        #
                        # storing links
                        # current_slice.children = cluster_slices_ids
                        # current_slice.weights = cluster_weights
                        current_slice.type = SumNode
                        building_stack.append(current_slice)
                        for child_slice, child_weight in zip(
                                cluster_slices, cluster_weights):
                            current_slice.add_child(child_slice, child_weight)

                        #
                        # building a sum node
                        SCOPES_DICT[frozenset(current_features)] += 1
                        sum_node = SumNode(
                            var_scope=frozenset(current_features))
                        sum_node.id = current_id
                        node_id_assoc[current_id] = sum_node
                        logging.debug(
                            '\tCreated Sum Node %s (with children %s)',
                            sum_node, cluster_slices_ids)

        learn_end_t = perf_counter()

        logging.info('\n\n\tStructure learned in %f secs',
                     (learn_end_t - learn_start_t))

        #
        # linking the spn graph (parent -> children)
        #
        logging.info('===> Building tree')

        link_start_t = perf_counter()
        root_build_node = building_stack[0]
        root_node = node_id_assoc[root_build_node.id]
        logging.debug('root node: %s', root_node)

        root_node = SpnFactory.pruned_spn_from_slices(node_id_assoc,
                                                      building_stack)
        link_end_t = perf_counter()
        logging.info('\tLinked the spn in %f secs (root_node %s)',
                     (link_end_t - link_start_t), root_node)

        #
        # building layers
        #
        logging.info('===> Layering spn')
        layer_start_t = perf_counter()
        spn = SpnFactory.layered_linked_spn(root_node)
        layer_end_t = perf_counter()
        logging.info('\tLayered the spn in %f secs',
                     (layer_end_t - layer_start_t))

        logging.info('\nLearned SPN\n\n%s', spn.stats())
        #logging.info('%s', SCOPES_DICT.most_common(30))

        return spn
예제 #9
0
def test_pruned_spn_from_slices():
    #
    # creating all the data slices
    # the slicing is a fake stub
    rows = 5
    cols = 5
    var = 1
    values = 2

    node_assoc = {}
    building_stack = deque()

    slice_1 = DataSlice.whole_slice(rows, cols)
    slice_1.type = SumNode
    node_1 = SumNode()
    node_1.id = slice_1.id
    node_assoc[node_1.id] = node_1
    building_stack.append(slice_1)

    slice_2 = DataSlice.whole_slice(rows, cols)
    slice_2.type = ProductNode
    node_2 = ProductNode()
    node_2.id = slice_2.id
    node_assoc[node_2.id] = node_2
    building_stack.append(slice_2)

    slice_3 = DataSlice.whole_slice(rows, cols)
    slice_3.type = SumNode
    node_3 = SumNode()
    node_3.id = slice_3.id
    node_assoc[node_3.id] = node_3
    building_stack.append(slice_3)

    # adding first level
    slice_1.add_child(slice_2, 0.8)
    slice_1.add_child(slice_3, 0.2)

    slice_4 = DataSlice.whole_slice(rows, cols)
    slice_4.type = ProductNode
    node_4 = ProductNode()
    node_4.id = slice_4.id
    node_assoc[node_4.id] = node_4
    building_stack.append(slice_4)

    leaf_5 = CategoricalSmoothedNode(var, values)
    slice_5 = DataSlice.whole_slice(rows, cols)
    leaf_5.id = slice_5.id
    node_assoc[leaf_5.id] = leaf_5
    # not adding the slice to the stack

    slice_2.add_child(slice_4)
    slice_2.add_child(slice_5)

    slice_6 = DataSlice.whole_slice(rows, cols)
    slice_6.type = SumNode
    node_6 = SumNode()
    node_6.id = slice_6.id
    node_assoc[node_6.id] = node_6
    building_stack.append(slice_6)

    slice_7 = DataSlice.whole_slice(rows, cols)
    slice_7.type = SumNode
    node_7 = SumNode()
    node_7.id = slice_7.id
    node_assoc[node_7.id] = node_7
    building_stack.append(slice_7)

    slice_3.add_child(slice_6, 0.4)
    slice_3.add_child(slice_7, 0.6)

    slice_8 = DataSlice.whole_slice(rows, cols)
    slice_8.type = ProductNode
    node_8 = ProductNode()
    node_8.id = slice_8.id
    node_assoc[node_8.id] = node_8
    building_stack.append(slice_8)

    leaf_15 = CategoricalSmoothedNode(var, values)
    slice_15 = DataSlice.whole_slice(rows, cols)
    leaf_15.id = slice_15.id
    node_assoc[leaf_15.id] = leaf_15

    slice_4.add_child(slice_8)
    slice_4.add_child(slice_15)

    leaf_13 = CategoricalSmoothedNode(var, values)
    slice_13 = DataSlice.whole_slice(rows, cols)
    leaf_13.id = slice_13.id
    node_assoc[leaf_13.id] = leaf_13

    leaf_14 = CategoricalSmoothedNode(var, values)
    slice_14 = DataSlice.whole_slice(rows, cols)
    leaf_14.id = slice_14.id
    node_assoc[leaf_14.id] = leaf_14

    slice_8.add_child(slice_13)
    slice_8.add_child(slice_14)

    slice_9 = DataSlice.whole_slice(rows, cols)
    slice_9.type = ProductNode
    node_9 = ProductNode()
    node_9.id = slice_9.id
    node_assoc[node_9.id] = node_9
    building_stack.append(slice_9)

    leaf_16 = CategoricalSmoothedNode(var, values)
    slice_16 = DataSlice.whole_slice(rows, cols)
    leaf_16.id = slice_16.id
    node_assoc[leaf_16.id] = leaf_16

    leaf_17 = CategoricalSmoothedNode(var, values)
    slice_17 = DataSlice.whole_slice(rows, cols)
    leaf_17.id = slice_17.id
    node_assoc[leaf_17.id] = leaf_17

    slice_9.add_child(slice_16)
    slice_9.add_child(slice_17)

    slice_10 = DataSlice.whole_slice(rows, cols)
    slice_10.type = ProductNode
    node_10 = ProductNode()
    node_10.id = slice_10.id
    node_assoc[node_10.id] = node_10
    building_stack.append(slice_10)

    leaf_18 = CategoricalSmoothedNode(var, values)
    slice_18 = DataSlice.whole_slice(rows, cols)
    leaf_18.id = slice_18.id
    node_assoc[leaf_18.id] = leaf_18

    leaf_19 = CategoricalSmoothedNode(var, values)
    slice_19 = DataSlice.whole_slice(rows, cols)
    leaf_19.id = slice_19.id
    node_assoc[leaf_19.id] = leaf_19

    slice_10.add_child(slice_18)
    slice_10.add_child(slice_19)

    slice_6.add_child(slice_9, 0.1)
    slice_6.add_child(slice_10, 0.9)

    slice_11 = DataSlice.whole_slice(rows, cols)
    slice_11.type = ProductNode
    node_11 = ProductNode()
    node_11.id = slice_11.id
    node_assoc[node_11.id] = node_11
    building_stack.append(slice_11)

    leaf_20 = CategoricalSmoothedNode(var, values)
    slice_20 = DataSlice.whole_slice(rows, cols)
    leaf_20.id = slice_20.id
    node_assoc[leaf_20.id] = leaf_20

    leaf_21 = CategoricalSmoothedNode(var, values)
    slice_21 = DataSlice.whole_slice(rows, cols)
    leaf_21.id = slice_21.id
    node_assoc[leaf_21.id] = leaf_21

    slice_11.add_child(slice_20)
    slice_11.add_child(slice_21)

    slice_12 = DataSlice.whole_slice(rows, cols)
    slice_12.type = ProductNode
    node_12 = ProductNode()
    node_12.id = slice_12.id
    node_assoc[node_12.id] = node_12
    building_stack.append(slice_12)

    leaf_22 = CategoricalSmoothedNode(var, values)
    slice_22 = DataSlice.whole_slice(rows, cols)
    leaf_22.id = slice_22.id
    node_assoc[leaf_22.id] = leaf_22

    leaf_23 = CategoricalSmoothedNode(var, values)
    slice_23 = DataSlice.whole_slice(rows, cols)
    leaf_23.id = slice_23.id
    node_assoc[leaf_23.id] = leaf_23

    slice_12.add_child(slice_22)
    slice_12.add_child(slice_23)

    slice_7.add_child(slice_11, 0.2)
    slice_7.add_child(slice_12, 0.7)

    root_node = SpnFactory.pruned_spn_from_slices(node_assoc, building_stack)

    print('ROOT nODE', root_node)

    spn = SpnFactory.layered_linked_spn(root_node)

    print('SPN', spn)

    assert spn.n_layers() == 3

    for i, layer in enumerate(spn.top_down_layers()):
        if i == 0:
            assert layer.n_nodes() == 1
        elif i == 1:
            assert layer.n_nodes() == 5
        elif i == 2:
            assert layer.n_nodes() == 12