task_data_size = task_transmission_data["task_data_size"] task_size[task_id] += task_data_size for i, size in enumerate(task_size): task_need_size = task_list[i]["data_size"] task_need_size_list[i] = task_need_size * 1024 * 1024 * 0.5 diff_size.append(task_need_size * 1024 * 1024 * 0.5 - size) if size >= task_need_size * 1024 * 1024 * 0.5: finished[i] = 1 """ ***************************************************************************************************************************************** """ potential_value_list = np.zeros(node_num_list[experiment_median_no]) for i in range(node_num_list[experiment_median_no]): potential_value = compute_potential_value(task_id_under_each_node_list[i], finished) potential_value_list[i] = potential_value max_potential_value[i] = max(potential_value, max_potential_value[i]) """ ***************************************************************************************************************************************** completed_ratio: 任务完成率 = 所有完成任务 / 车辆范围内所有任务 channel_utilization_efficiency: 信道利用率 = 传输数据量 / (信道数量 * 时间) social_welfare: 社会福利 = 所有节点的势函数值之和 """ completed_num = 0 for isFinish in finished: if isFinish == 1: completed_num += 1 completed_ratio = completed_num / len(union_task_id_set)
def ipus_get_evaluation(strategy_list, experiment_median_num, node_num): """ :argument strategy_list: 每个节点选择策略组成的列表 experiment_median_num: 从第几个experiment_median文件中读取实验设置 node_num:对应experiment_median 实验中具有任务的节点数量 :return completed_ratio: 任务完成率 = 所有完成任务 / 车辆范围内所有任务 channel_utilization_efficiency: 信道利用率 = 传输数据量 / (信道数量 * 时间) social_welfare: 社会福利 = 所有节点的势函数值之和 """ pickle_file = Path( load_experiment_median_from_pickle(experiment_median_num)) fp = pickle_file.open("rb") iteration = pickle.load(fp) fixed_edge_node = pickle.load(fp) edge_vehicle_node = pickle.load(fp) fixed_distance_matrix = pickle.load(fp) mobile_distance_matrix = pickle.load(fp) task_list = pickle.load(fp) node_num_not_used = pickle.load(fp) fixed_node_num = pickle.load(fp) mobile_node_num = pickle.load(fp) max_potential_value = pickle.load(fp) useful_channel_under_node = pickle.load(fp) task_id_under_each_node_list = pickle.load(fp) usable_channel_of_all_nodes = pickle.load(fp) task_time_limitation_of_all_nodes = pickle.load(fp) combination_and_strategy_length_of_all_nodes = pickle.load(fp) union_task_id_set = set() for task_id_under_each_node in task_id_under_each_node_list: task_id_set = set(task_id_under_each_node) union_task_id_set = union_task_id_set | task_id_set white_gaussian_noise = settings.WHITE_GAUSSIAN_NOISE antenna_constant = settings.ANTENNA_CONSTANT path_loss_exponent = settings.PATH_LOSS_EXPONENT sub_channel_bandwidth = settings.SUB_CHANNEL_BANDWIDTH selected_strategy = dict() selected_strategy_no = dict() """ ———————————————————————————————————————————————————————————————————————————————————— 选择策略 ———————————————————————————————————————————————————————————————————————————————————— """ for i in range(node_num): combination_and_strategy_length = combination_and_strategy_length_of_all_nodes[ i] decimal_num = strategy_list[i] x_base = combination_and_strategy_length["length_of_combination"][0] x_base_num = list() if decimal_num < 0: print("decimal_num < 0") while True: decimal_num, remainder = divmod(decimal_num, x_base) x_base_num.append(remainder) if decimal_num <= 0: break if len(x_base_num) < 10: for i in range(10 - len(x_base_num)): x_base_num.append(0) x_base_num.reverse() strategy = constructor_of_strategy( x_base_num=x_base_num, combination=combination_and_strategy_length[ "combination_of_task_and_time"]) print("strategy") print(strategy) selected_strategy[str(i)] = strategy selected_strategy_no[str(i)] = strategy_list[i] # 更新信道分配 print(selected_strategy) for i in range(len(selected_strategy)): print(selected_strategy[str(i)]) useful_channel_under_node[i] = update_useful_channel( selected_strategy[str(i)], useful_channel_under_node[i]) task_transmission_data_dict_of_all_nodes = dict() """ ________________________________________________________________________________________________________________________________________- 计算传输数据 ***************************************************************************************************************************************** """ node_type = settings.NODE_TYPE_FIXED for fixed_node_id in range(fixed_node_num): # print_to_console(task_id_under_each_node_list) task_id_list = task_id_under_each_node_list[fixed_node_id] node_strategy = selected_strategy[str(fixed_node_id)] task_transmission_data_list = [] for task_id in task_id_list: task_data_size = 0 for node_strategy_no in range(len(node_strategy)): # 对于节点的每个信道上的分配 allocated_channel_no = useful_channel_under_node[ fixed_node_id]["node_channel"][ node_strategy_no] # 该行策略分配对应的信道编号 if task_id == node_strategy[node_strategy_no][0]: # 为这个任务分配了信道 task_time = node_strategy[node_strategy_no][1] # 信道的分配时长 signal_list = list() # 保存每个边缘节点使用相同信道时传输到任务上的信号 for node_no, useful_channel in enumerate( useful_channel_under_node[:fixed_node_num]): node_channel = useful_channel["node_channel"] channel_status = useful_channel["channel_status"] for i, channel_no in enumerate(node_channel): if allocated_channel_no == channel_no: if channel_status[i] > 0: distance = fixed_distance_matrix[node_no][ task_id] channel_fading_gain = random_channel_fading_gain( ) transmission_power = fixed_edge_node[ node_no]["channel_power"] signal_value = np.square( channel_fading_gain ) * antenna_constant * np.power( distance, 0 - path_loss_exponent ) * transmission_power signal = { "node_type": settings.NODE_TYPE_FIXED, "node_id": node_no, "signal": signal_value[0] } signal_list.append(signal) for node_no, useful_channel in enumerate( useful_channel_under_node[fixed_node_num:]): node_channel = useful_channel["node_channel"] channel_status = useful_channel["channel_status"] for i, channel_no in enumerate(node_channel): if allocated_channel_no == channel_no: if channel_status[i] > 0: distance = mobile_distance_matrix[node_no][ task_id] channel_fading_gain = random_channel_fading_gain( ) transmission_power = edge_vehicle_node[ node_no]["channel_power"] signal_value = np.square( channel_fading_gain ) * antenna_constant * np.power( distance, 0 - path_loss_exponent ) * transmission_power signal = { "node_type": settings.NODE_TYPE_MOBILE, "node_id": node_no + int(len(fixed_edge_node)), "signal": signal_value } signal_list.append(signal) inter_signal_value = 0 interference = 0 for signal_dict in signal_list: if signal_dict["node_type"] == node_type: if signal_dict["node_id"] == fixed_node_id: inter_signal_value = signal_dict["signal"] else: interference += signal_dict["signal"] else: interference += signal_dict["signal"] SINR = inter_signal_value / (interference + white_gaussian_noise) channel_data_size = task_time * sub_channel_bandwidth * np.log2( 1 + SINR) task_data_size += channel_data_size task_transmission_data = { "task_id": task_id, "task_data_size": task_data_size } task_transmission_data_list.append(task_transmission_data) task_transmission_data_dict_of_all_nodes[str( fixed_node_id)] = task_transmission_data_list node_type = settings.NODE_TYPE_MOBILE for mobile_node_id in range(fixed_node_num, node_num): task_id_list = task_id_under_each_node_list[mobile_node_id] node_strategy = selected_strategy[str(mobile_node_id)] task_transmission_data_list = [] for task_id in task_id_list: task_data_size = 0 for node_strategy_no in range(len(node_strategy)): allocated_channel_no = useful_channel_under_node[ mobile_node_id]["node_channel"][ node_strategy_no] # 该行策略分配对应的信道编号 if task_id == node_strategy[node_strategy_no][0]: task_time = node_strategy[node_strategy_no][1] signal_list = list() for node_no, useful_channel in enumerate( useful_channel_under_node[:fixed_node_num]): node_channel = useful_channel["node_channel"] channel_status = useful_channel["channel_status"] for i, channel_no in enumerate(node_channel): if allocated_channel_no == channel_no: if channel_status[i] > 0: distance = fixed_distance_matrix[node_no][ task_id] channel_fading_gain = random_channel_fading_gain( ) transmission_power = fixed_edge_node[ node_no]["channel_power"] signal_value = np.square( channel_fading_gain ) * antenna_constant * np.power( distance, 0 - path_loss_exponent ) * transmission_power signal = { "node_type": settings.NODE_TYPE_FIXED, "node_id": node_no, "signal": signal_value } signal_list.append(signal) for node_no, useful_channel in enumerate( useful_channel_under_node[fixed_node_num:]): node_channel = useful_channel["node_channel"] channel_status = useful_channel["channel_status"] for i, channel_no in enumerate(node_channel): if allocated_channel_no == channel_no: if channel_status[i] > 0: distance = mobile_distance_matrix[node_no][ task_id] channel_fading_gain = random_channel_fading_gain( ) transmission_power = edge_vehicle_node[ node_no]["channel_power"] signal_value = np.square( channel_fading_gain ) * antenna_constant * np.power( distance, 0 - path_loss_exponent ) * transmission_power signal = { "node_type": settings.NODE_TYPE_MOBILE, "node_id": node_no + int(len(fixed_edge_node)), "signal": signal_value } signal_list.append(signal) inter_signal_value = 0 interference = 0 for signal_dict in signal_list: if signal_dict["node_type"] == node_type: if signal_dict["node_id"] == mobile_node_id: inter_signal_value = signal_dict["signal"] else: interference += signal_dict["signal"] else: interference += signal_dict["signal"] SINR = inter_signal_value / (interference + white_gaussian_noise) # print(SINR) channel_data_size = task_time * sub_channel_bandwidth * np.log2( 1 + SINR) task_data_size += channel_data_size task_transmission_data = { "task_id": task_id, "task_data_size": task_data_size } task_transmission_data_list.append(task_transmission_data) task_transmission_data_dict_of_all_nodes[str( mobile_node_id)] = task_transmission_data_list """ ***************************************************************************************************************************************** 计算 任务完成数 ***************************************************************************************************************************************** """ finished = np.zeros(len(task_list)) task_size = np.zeros(len(task_list)) task_need_size_list = np.zeros(len(task_list)) diff_size = [] for key in task_transmission_data_dict_of_all_nodes.keys(): task_transmission_data_list = task_transmission_data_dict_of_all_nodes[ key] for task_transmission_data in task_transmission_data_list: task_id = task_transmission_data["task_id"] task_data_size = task_transmission_data["task_data_size"] task_size[task_id] += task_data_size for i, size in enumerate(task_size): task_need_size = task_list[i]["data_size"] task_need_size_list[i] = task_need_size * 1024 * 1024 * 0.5 diff_size.append(task_need_size * 1024 * 1024 * 0.5 - size) if size >= task_need_size * 1024 * 1024 * 0.5: finished[i] = 1 """ ***************************************************************************************************************************************** """ potential_value_list = np.zeros(node_num) for i in range(node_num): potential_value = compute_potential_value( task_id_under_each_node_list[i], finished) potential_value_list[i] = potential_value max_potential_value[i] = max(potential_value, max_potential_value[i]) """ ***************************************************************************************************************************************** completed_ratio: 任务完成率 = 所有完成任务 / 车辆范围内所有任务 channel_utilization_efficiency: 信道利用率 = 传输数据量 / (信道数量 * 时间) social_welfare: 社会福利 = 所有节点的势函数值之和 """ completed_num = 0 print("finished") print(finished) for isFinish in finished: if isFinish == 1: completed_num += 1 completed_ratio = completed_num / len(union_task_id_set) channel_utilization_num = 0 for strategy in strategy_list: for strategy_channel in strategy: if strategy_channel[0] != -1: channel_time = strategy_channel[1] channel_utilization_num += channel_time channel_utilization_efficiency = sum(task_size) / channel_utilization_num social_welfare = sum(potential_value_list) return { "completed_ratio": completed_ratio, "channel_utilization_efficiency": channel_utilization_efficiency, "social_welfare": social_welfare }