def run_test(): from PyGMO import problem, algorithm, island from numpy import mean, std number_of_trials = 200 number_of_individuals = 20 number_of_generations = 500 prob_list = [problem.schwefel(10), problem.rastrigin(10), problem.rosenbrock(10), problem.ackley(10), problem.griewank(10)] algo_list = [algorithm.pso(number_of_generations), algorithm.de(number_of_generations,0.8,0.8,2),algorithm.sa_corana(number_of_generations*number_of_individuals,1,0.1), algorithm.ihs(number_of_generations*number_of_individuals), algorithm.sga(number_of_generations,0.8,0.1)] for prob in prob_list: print('\nTesting problem: ' + str(type(prob)) + ', Dimension: ' + str(prob.dimension)) for algo in algo_list: print(' ' + str(algo)) best = [] best_x = [] for i in range(0,number_of_trials): isl = island(algo,prob,number_of_individuals) isl.evolve(1) isl.join() best.append(isl.population.champion.f) best_x.append(isl.population.champion.x) print(' Best:\t' + str(min(best)[0])) print(' Mean:\t' + str(mean(best))) print(' Std:\t' + str(std(best)))
def example_2(algo=algorithm.de(1), prob = problem.rosenbrock(10), topo = topology.barabasi_albert(3,3), n_evolve = 100, n_isl = 1024, pop_size = 20, color_code='rank'): from PyGMO import problem, algorithm, island, archipelago from matplotlib.pyplot import savefig, close archi = archipelago(algo,prob,n_isl,pop_size,topology=topo) print "Drawing Initial Condition .. " pos = archi.draw(scale_by_degree=True,n_size=3,e_alpha=0.03, n_color = color_code) savefig('archi000', dpi = 72) close() for i in range(1,n_evolve): archi.evolve(1); archi.join(); print "Drawing"+ str(i) + "-th evolution .. " pos = archi.draw(layout = pos, scale_by_degree=True,n_size=3,e_alpha=0.03, n_color = color_code) savefig('archi%03d' % i, dpi = 72); close()
def run_test(): from PyGMO import problem, algorithm, island from numpy import mean, std number_of_trials = 200 number_of_individuals = 20 number_of_generations = 500 prob_list = [ problem.schwefel(10), problem.rastrigin(10), problem.rosenbrock(10), problem.ackley(10), problem.griewank(10) ] algo_list = [ algorithm.pso(number_of_generations), algorithm.de(number_of_generations, 0.8, 0.8, 2), algorithm.sa_corana(number_of_generations * number_of_individuals, 1, 0.1), algorithm.ihs(number_of_generations * number_of_individuals), algorithm.sga(number_of_generations, 0.8, 0.1) ] for prob in prob_list: print('\nTesting problem: ' + str(type(prob)) + ', Dimension: ' + str(prob.dimension)) for algo in algo_list: print(' ' + str(algo)) best = [] best_x = [] for i in range(0, number_of_trials): isl = island(algo, prob, number_of_individuals) isl.evolve(1) isl.join() best.append(isl.population.champion.f) best_x.append(isl.population.champion.x) print(' Best:\t' + str(min(best)[0])) print(' Mean:\t' + str(mean(best))) print(' Std:\t' + str(std(best)))
def run_test(n_trials=200, pop_size = 20, n_gen = 500): """ This function runs some tests on the algorthm. Use it to verify the correct installation of PyGMO. USAGE: PyGMO.run_test(n_trials=200, pop_size = 20, n_gen = 500) * n_trials: each algorithm will be called n_trials times on the same problem to then evaluate best, mean and std * pop_size: this determines the population size * n_gen: this regulates the maximim number of function evaluation """ from PyGMO import problem, algorithm, island from numpy import mean, std number_of_trials = n_trials number_of_individuals = pop_size number_of_generations = n_gen prob_list = [problem.schwefel(dim = 10), problem.rastrigin(dim = 10), problem.rosenbrock(dim = 10), problem.ackley(dim = 10), problem.griewank(dim = 10), problem.levy5(10)] if __extensions__['gtop']: prob_list.append(problem.cassini_1()) prob_list.append(problem.gtoc_1()) prob_list.append(problem.cassini_2()) prob_list.append(problem.messenger_full()) algo_list = [algorithm.pso(gen = number_of_generations), algorithm.mde_pbx(gen = number_of_generations, xtol=1e-30, ftol=1e-30), algorithm.de(gen = number_of_generations,xtol=1e-30, ftol=1e-30), algorithm.jde(gen = number_of_generations, memory=False,xtol=1e-30, ftol=1e-30), algorithm.de_1220(gen = number_of_generations, memory=False,xtol=1e-30, ftol=1e-30), algorithm.sa_corana(iter = number_of_generations*number_of_individuals,Ts = 1,Tf = 0.01), algorithm.ihs(iter = number_of_generations*number_of_individuals), algorithm.sga(gen = number_of_generations), algorithm.cmaes(gen = number_of_generations,xtol=1e-30, ftol=1e-30, memory=False), algorithm.bee_colony(gen = number_of_generations/2)] print('\nTrials: ' + str(n_trials) + ' - Population size: ' + str(pop_size) + ' - Generations: ' + str(n_gen)) for prob in prob_list: print('\nTesting problem: ' + prob.get_name() + ', Dimension: ' + str(prob.dimension) ) print('With Population Size: ' + str(pop_size) ) for algo in algo_list: print(' ' + str(algo)) best = [] best_x = [] for i in range(0,number_of_trials): isl = island(algo,prob,number_of_individuals) isl.evolve(1) isl.join() best.append(isl.population.champion.f) best_x.append(isl.population.champion.x) print(' Best:\t' + str(min(best)[0])) print(' Mean:\t' + str(mean(best))) print(' Std:\t' + str(std(best)))