예제 #1
0
def RFIndustry(StartYear,
               EndYear,
               PreStartYear,
               PreEndYear,
               timestep,
               pretype,
               n_estimators=50,
               city="云南省"):
    """   

    Parameters
    ----------
    StartYear : str
        历史数据起始年份
    EndYear : str
        历史数据终止年份
    PreStartYear : str
        预测起始年份
    PreEndYear : str
        预测终止年份
    timestep  :  int
        训练数据步长, 常常大于预测时间段的2倍
    n_estimators  :  int
        随机森林数目个数. The default is 50.
    pretype : str, optional
        预测类型:"consumption"、"load". The default is "consumption".
    city : str, optional
        选择城市. The default is "云南省".

    Returns
    -------
    "trainfromyear":StartYear  
        
    "traintoyear":EndYear
    
    "trainresult":ytrain,  array
        训练结果
    "prefromyear":PreStartYear
    
    "pretoyear":PreEndYear
    
    "preresult":ypre,  array
        预测结果
    "MAPE":mape, float
        
    "RMSE":rmse, float
    
    """

    if timestep > (int(EndYear) - int(StartYear) + 1):
        raise ValueError("训练步长过大,请调整后重试")
    elif int(EndYear) - int(StartYear) < (int(PreEndYear) - int(PreStartYear) +
                                          timestep):
        raise ValueError("历史时间长度小于预测时间长度,请增加历史时间长度或减小预测时间长度")
    else:

        name = [pretype]
        finaldata = []

        outputlen = int(PreEndYear) - int(PreStartYear) + 1

        #读取历史负荷数据
        datajson = getData("云南省_year_电力电量类-行业", pretype, StartYear, EndYear)
        # print(datajson)
        data = json.loads(datajson)
        finaldata.append(data)
        final = pd.DataFrame(finaldata, index=name)
        final = final.T
        test_size = 0

        X, y = generate_data(final,
                             timestep,
                             outputlen,
                             test_size=test_size,
                             if_norm="no")
        y["train"].ravel()
        #构建随机森林模型
        rf = RandomForestRegressor(n_estimators)  #n_estimators:森林个数
        rf.fit(X["train"], y["train"])

        testdata = final[pretype].values
        testinput = []
        testoutput = []
        num = len(X["train"])
        selet = int(np.floor(num / 2))
        testinput = X["train"][selet:, :]
        testoutput = y["train"][selet:, :]

        #训练结果
        y_rf = rf.predict(testinput)
        y_rf_real = np.array(y_rf).reshape(-1, 1)  #训练数据预测结果
        y_real = np.array(testoutput).reshape(-1, 1)

        mape = MAPE(y_rf_real, y_real)
        rmse = RMSE(y_rf_real, y_real)

        #目标结果,修正
        pre_y_rf = rf.predict(
            np.array(np.flipud(testdata[-1:-(timestep + 1):-1])).reshape(
                1, -1)) + 500

        #保存训练结果

        trainyear = []
        for t in y_real:
            count = -1
            for d in final[pretype]:
                count += 1

                if t > d - 5 and t < d + 5:
                    # print("yes")
                    trainyear.append(final.index[count])
                    break

        ytrain = y_rf_real.flatten()
        ypre = pre_y_rf.flatten()

        result = {
            "trainfromyear": trainyear[0],
            "traintoyear": trainyear[-1],
            "trainresult": ytrain.tolist(),
            "prefromyear": PreStartYear,
            "pretoyear": PreEndYear,
            "preresult": ypre.tolist(),
            "MAPE": mape,
            "RMSE": rmse
        }

        return result
예제 #2
0
def BPNNIndustry(StartYear,
                 EndYear,
                 PreStartYear,
                 PreEndYear,
                 timestep,
                 pretype,
                 city="云南省",
                 hidden=[24, 12],
                 learningrate=0.005,
                 epoch=1000):
    """

    Parameters
    ----------
    StartYear : TYPE
        DESCRIPTION.
    EndYear : TYPE
        DESCRIPTION.
    PreStartYear : TYPE
        DESCRIPTION.
    PreEndYear : TYPE
        DESCRIPTION.
    timestep : TYPE
        DESCRIPTION.
    pretype : TYPE, optional
        DESCRIPTION. The default is "consumption".
    city : TYPE, optional
        DESCRIPTION. The default is "云南省".
    hidden : TYPE, optional
        神经网络的隐藏层, list, 几个元素代表几层,每层神经元个数为list元素值. The default is [24,12].
    learningrate : TYPE, optional
        神经网络学习率. The default is 0.005.
    epoch : TYPE, optional
        训练学习次数. The default is 1000.

    Returns
    -------
    None.

    """
    def bpnn(timestep, outputlen, x_train, y_train, x_test, y_test, x_pre,
             hiddenneron, lr, epoch):
        x = tf.placeholder(tf.float32, shape=[None, timestep], name="Input")
        y = tf.placeholder(tf.float32, shape=[None, outputlen], name="Onput")
        hlen = len(hiddenneron)
        f = locals()
        for i in range(hlen + 1):
            if i == 0:
                f["f%s" % (i + 1)] = tf.contrib.layers.fully_connected(
                    x, hiddenneron[i])
            else:
                if i == hlen:
                    pre = tf.contrib.layers.fully_connected(
                        f["f%s" % (i)], outputlen)
                else:
                    f["f%s" % (i + 1)] = tf.contrib.layers.fully_connected(
                        f["f%s" % (i)], hiddenneron[i])

        loss = tf.losses.mean_squared_error(y, pre)

        train_op = tf.train.AdamOptimizer(lr).minimize(loss)

        saver = tf.train.Saver()

        with tf.Session() as sess:
            init = tf.initialize_all_variables()
            sess.run(init)
            for i in range(epoch):
                sess.run(train_op, feed_dict={x: x_train, y: y_train})
                lossz = sess.run(loss, feed_dict={x: x_train, y: y_train})
                if i % 50 == 0:
                    print(lossz)

            y_train_pre = sess.run(pre, feed_dict={x: x_train})

            y_test_pre = sess.run(pre, feed_dict={x: x_test})

            y_pre = sess.run(pre, feed_dict={x: x_pre})

            training = np.array(y_train_pre).squeeze()

            predictions = np.array(y_test_pre).squeeze()
            labels = np.array(y_test).squeeze()
            # saver.save(sess, "D:/lab/Yunnan_Pre/result/yunnan_shortterm_钢铁_BPNN/")
        return predictions, labels, y_pre, training

    if timestep > (int(EndYear) - int(StartYear) + 1) * 0.5:
        raise ValueError("训练步长过大,请调整后重试")
    elif int(EndYear) - int(StartYear) < (int(PreEndYear) - int(PreStartYear) +
                                          timestep):
        raise ValueError("历史时间长度小于预测时间长度与训练步长之和, 请调整后重试")
    else:
        #读取数据,确定参数
        name = [pretype]
        finaldata = []
        outputlen = int(PreEndYear) - int(PreStartYear) + 1

        datajson = getData("云南省_year_电力电量类-行业", pretype, StartYear, EndYear)
        data = json.loads(datajson)
        finaldata.append(data)
        final = pd.DataFrame(finaldata, index=name)
        final = final.T

        test_size = 0  #测试数据集应当取0才可以
        X, y = generate_data(final,
                             timestep,
                             outputlen,
                             test_size=test_size,
                             if_norm="no")
        testdata = final[pretype].values
        testinput = []
        testoutput = []

        num = len(X["train"])
        selet = int(np.floor(num / 2))
        testinput = X["train"][selet:, :]
        testoutput = y["train"][selet:, :]

        x_pre = np.array(np.flipud(testdata[-1:-(timestep + 1):-1])).reshape(
            1, -1)

        test_pre, test_label, pre, training = bpnn(
            timestep, outputlen, X["train"][:-1, :], y["train"][:-1, :],
            testinput, testoutput, x_pre, hidden, learningrate, epoch)

        mape = MAPE(test_pre, test_label)
        rmse = RMSE(test_pre, test_label)

        #保存训练结果,年份上可能有问题
        #trainingtrue=y["train"][:-1,:].flatten()
        trainingtrue = y["train"][-1, :]

        trainyear = []
        for t in trainingtrue:
            count = -1
            for d in final[pretype]:
                count += 1

                if t > d - 5 and t < d + 5:
                    # print("yes")
                    trainyear.append(final.index[count])
                    break

        ytrain = training[-1]
        ypre = pre.flatten()

        #trainsave.to_csv("D:/lab/Yunnan_Pre/result/yunnan_shortterm_consumption_BPNN_training.csv")
        result = {
            "trainfromyear": trainyear[0],
            "traintoyear": trainyear[-1],
            "trainresult": ytrain.tolist(),
            "prefromyear": PreStartYear,
            "pretoyear": PreEndYear,
            "preresult": ypre.tolist(),
            "MAPE": mape,
            "RMSE": rmse
        }
        #保存
        return result
예제 #3
0
def LSTMpre(StartYear,EndYear,PreStartYear,PreEndYear,timestep,pretype="全社会用电量",city="云南省", hidden_size=24,hidden_layer=1, learningrate=0.005,epoch=1000):

    #搭建LSTM模块
    def LSTM(x,y,outputlen,is_training,hidden_size,num_layers,lr,optimizer,keep_pro):
        cell=tf.nn.rnn_cell.BasicLSTMCell
        if is_training and keep_pro<1:
            lstmcell=tf.nn.rnn_cell.MultiRNNCell([tf.nn.rnn_cell.DropoutWrapper(cell(hidden_size,activation=tf.nn.softsign),output_keep_prob=keep_pro) for _ in range(num_layers)])
        else:
            lstmcell=tf.nn.rnn_cell.MultiRNNCell([cell(hidden_size) for _ in range(num_layers)])
        x=tf.expand_dims(x,axis=2)
        outputs,current_state=tf.nn.dynamic_rnn(lstmcell,x,dtype=tf.float32)
        output=outputs[:,-1,:]
        predictions=tf.contrib.layers.fully_connected(output,outputlen)
        
        if not is_training:
            return predictions,None,None
        loss=tf.losses.absolute_difference(labels=y,predictions=predictions)
        train_op=tf.contrib.layers.optimize_loss(loss,tf.train.get_global_step(),optimizer=optimizer,learning_rate=lr)
        return predictions,loss,train_op
    
    #训练模型模块
    def trainmodel(sess,outputlen,train_x,train_y,hidden_size,num_layers,lr,optimizer,keep_pro,batch_size,training_step):
        ds=tf.data.Dataset.from_tensor_slices((train_x,train_y))
        ds=ds.repeat().shuffle(100).batch(batch_size)
        x,y=ds.make_one_shot_iterator().get_next()
        prediction,loss,train_op=LSTM(x,y,outputlen,True,hidden_size,num_layers,lr,optimizer,keep_pro)
        losses=[]
        sess.run(tf.global_variables_initializer())
        ytrain=[]
        for j in range(training_step):
            y,p,l=sess.run([prediction,train_op,loss])
            ytrain.append(y)
        return ytrain
    
    
    #测试模型模块    
    def runmodel(sess,outputlen,test_x,test_y,hidden_size,num_layers,lr,optimizer,keep_pro,batch_size,training_step):
        ds=tf.data.Dataset.from_tensor_slices((test_x,test_y))
        ds=ds.batch(1)
        x,y=ds.make_one_shot_iterator().get_next()
        prediction,_,_=LSTM(x,[0.0],outputlen,False,hidden_size,num_layers,lr,optimizer,keep_pro)
        pre=[]
        label=[]
        for j in range(len(test_y)):

            p,l=sess.run([prediction,y])
            pre.append(p)
            label.append(l)

        pre=np.array(pre).squeeze()
        labels=np.array(label).squeeze()


        return pre,labels
    
        #预测模型模块    
    def premodel(sess,outputlen,test_x,test_y,hidden_size,num_layers,lr,optimizer,keep_pro,batch_size,training_step):

        prediction,_,_=LSTM(test_x,[0.0],outputlen,False,hidden_size,num_layers,lr,optimizer,keep_pro)
        finalpre=sess.run(prediction)
        return finalpre


    #设置参数
    if timestep > (int(EndYear)-int(StartYear)+1)*0.5:
        raise ValueError("训练步长过大,请调整后重试")
    elif int(EndYear)-int(StartYear)<(int(PreEndYear)-int(PreStartYear)+timestep):
        raise ValueError("历史时间长度小于 预测时间长度与训练步长之和,请调整后重试")    
    else:
        optimizer="Adam"
        keep_pro=0.9
        batch_size=16
    
        
        #读取数据,确定参数
        name=[pretype]
        finaldata=[]
        outputlen=int(PreEndYear)-int(PreStartYear)+1
        
        datajson=getData("云南省_year_电力电量类", pretype, StartYear, EndYear)
        data=json.loads(datajson)
        finaldata.append(data)
        final=pd.DataFrame(finaldata,index=name)
        final=final.T
    
        test_size=0#测试数据集应当取0才可以
        X,y=generate_data(final,timestep,outputlen,test_size=test_size,if_norm="no")
        testdata=final[pretype].values
        testinput=[]
        testoutput=[]
        
        num=len(X["train"])
        selet=int(np.floor(num/2))
        testinput=X["train"][selet:,:]
        testoutput=y["train"][selet:,:]
        
        #最终预测需要的数据
        x_pre=testdata[-1:-(timestep+1):-1].reshape(1,-1)
        x_pre=np.array(x_pre, dtype = np.float32)
    
        #训练模型并预测结果
        tf.reset_default_graph()
        with tf.Session() as sess:
            
            with tf.variable_scope("LSTM"):
                ytrain=trainmodel(sess,outputlen,X["train"][:-1,:],y["train"][:-1,:],hidden_size,hidden_layer,learningrate,optimizer,keep_pro,batch_size,epoch)
                
            with tf.variable_scope("LSTM",reuse=True):
                test_pre,test_label=runmodel(sess,outputlen,testinput,testoutput,hidden_size,hidden_layer,learningrate,optimizer,keep_pro,batch_size,epoch)
            with tf.variable_scope("LSTM",reuse=True):   
                ypre=premodel(sess,outputlen,x_pre,x_pre,hidden_size,hidden_layer,learningrate,optimizer,keep_pro,batch_size,epoch)
        
        mape=MAPE(test_pre,test_label)
        rmse=RMSE(test_pre,test_label)
        
        trainyear=[]
        trainingtrue=y["train"][-1,:]
        for t in trainingtrue:
            count=-1
            for d in final[pretype]:
                count+=1
                
                if t>d-5 and t<d+5:
                    # print("yes")
                    trainyear.append(final.index[count])
                    break
        ypre=np.array(ypre).squeeze()
        result={"prefromyear":PreStartYear,"pretoyear":PreEndYear,"preresult":ypre.tolist(),"MAPE":mape,"RMSE":rmse}
    
        
        return result
예제 #4
0
def GBDT(StartYear,
         EndYear,
         PreStartYear,
         PreEndYear,
         timestep,
         pretype="全社会用电量",
         city="云南省",
         LearningRate=0.5,
         MaxDepth=20,
         NumberofEstimators=500):

    if timestep > (int(EndYear) - int(StartYear) + 1):
        raise ValueError("训练步长过大,请调整后重试.")
    elif int(EndYear) - int(StartYear) < (int(PreEndYear) - int(PreStartYear) +
                                          timestep):
        raise ValueError("历史时间长度小于预测时间长度,请增加历史时间长度或减小预测时间长度.")
    else:
        #读取数据,确定参数
        name = [pretype]
        finaldata = []
        outputlen = int(PreEndYear) - int(PreStartYear) + 1

        datajson = getData("云南省_year_电力电量类", pretype, StartYear, EndYear)
        data = json.loads(datajson)
        finaldata.append(data)
        final = pd.DataFrame(finaldata, index=name)
        final = final.T

        test_size = 0  #测试数据集应当取0.3才可以
        X, y = generate_data(final,
                             timestep,
                             outputlen,
                             test_size=test_size,
                             if_norm="no")

        gbdt = xgb.XGBRegressor(max_depth=MaxDepth,
                                learning_rate=LearningRate,
                                n_estimators=NumberofEstimators,
                                silent=True,
                                objective='reg:linear',
                                booster='gblinear',
                                n_jobs=50,
                                nthread=None,
                                gamma=0,
                                min_child_weight=1,
                                max_delta_step=0,
                                subsample=1,
                                colsample_bytree=1,
                                colsample_bylevel=1,
                                reg_alpha=0,
                                reg_lambda=1,
                                scale_pos_weight=1,
                                base_score=0.5,
                                random_state=0,
                                seed=None,
                                missing=None,
                                importance_type='gain')  #

        multi_model = MultiOutputRegressor(gbdt)
        multi_model.fit(X["train"], y["train"])

        testdata = final.values
        num = len(X["train"])
        selet = int(np.floor(num / 2))
        testinput = X["train"][selet:, :]
        testoutput = y["train"][selet:, :]

        x_pre = np.array(np.flipud(testdata[-1:-(timestep + 1):-1])).reshape(
            1, -1)

        y1_gbdt = multi_model.predict(testinput)
        y1_gbdt_real = np.array(y1_gbdt).reshape(-1, 1)
        y1_real = np.array(testoutput).reshape(-1, 1)

        mape = MAPE(y1_gbdt_real, y1_real)
        rmse = RMSE(y1_gbdt_real, y1_real)

        ytrain = y1_gbdt[-1]
        trainyear = []
        for t in testoutput[-1]:
            count = -1
            for d in final[pretype]:
                count += 1
                if t > d - 1 and t < d + 1:
                    trainyear.append(final.index[count])
                    break
        pre = multi_model.predict(x_pre)
        ypre = np.array(pre).flatten().tolist()
        result = {
            "trainfromyear": trainyear[0],
            "traintoyear": trainyear[-1],
            "trainresult": ytrain.tolist(),
            "prefromyear": PreStartYear,
            "pretoyear": PreEndYear,
            "preresult": ypre,
            "MAPE": mape,
            "RMSE": rmse
        }
        #保存
        return result
예제 #5
0
파일: SVM.py 프로젝트: Lyanf/ynpowerbackend
def SVM(StartYear,
        EndYear,
        PreStartYear,
        PreEndYear,
        timestep,
        pretype="全社会用电量",
        city="云南省"):
    #读取数据,确定参数
    if timestep > (int(EndYear) - int(StartYear) + 1):
        raise ValueError("训练步长过大,请调整后重试")
    elif int(EndYear) - int(StartYear) < (int(PreEndYear) - int(PreStartYear) +
                                          timestep):
        raise ValueError("历史时间长度小于预测时间长度与训练步长之和,请调整后重试")
    else:
        name = [pretype]
        finaldata = []
        outputlen = int(PreEndYear) - int(PreStartYear) + 1

        datajson = getData("云南省_year_电力电量类", pretype, StartYear, EndYear)
        data = json.loads(datajson)
        finaldata.append(data)
        final = pd.DataFrame(finaldata, index=name)
        final = final.T

        test_size = 0  #测试数据集应当取0才可以
        X, y = generate_data(final,
                             timestep,
                             outputlen,
                             test_size=test_size,
                             if_norm="no")
        testdata = final[pretype].values
        testinput = []
        testoutput = []

        X, y = generate_data(final,
                             timestep,
                             outputlen,
                             test_size=test_size,
                             if_norm="no")
        svr = SVR(kernel="poly", gamma="scale", C=0.1)  #kernel="linear","poly"
        multi_model = MultiOutputRegressor(svr)
        multi_model.fit(X["train"], y["train"])

        testdata = final.values

        num = len(X["train"])
        selet = int(np.floor(num / 2))
        testinput = X["train"][selet:, :]
        testoutput = y["train"][selet:, :]

        y_svr = multi_model.predict(testinput)
        y_svr_real = np.array(y_svr).reshape(-1, 1)
        y_real = np.array(testoutput).reshape(-1, 1)

        mape = MAPE(y_svr_real, y_real)
        rmse = RMSE(y_svr_real, y_real)

        pre = multi_model.predict(
            np.array(np.flipud(testdata[-1:-(timestep + 1):-1])).reshape(
                1, -1))

        ytrain = y_svr[-1]
        trainyear = []
        for t in testoutput[-1]:
            count = -1
            for d in final[pretype]:
                count += 1
                if t > d - 1 and t < d + 1:
                    trainyear.append(final.index[count])
                    break

        ypre = np.array(pre).flatten()
        result = {
            "trainfromyear": trainyear[0],
            "traintoyear": trainyear[-1],
            "trainresult": ytrain.tolist(),
            "prefromyear": PreStartYear,
            "pretoyear": PreEndYear,
            "preresult": ypre.tolist(),
            "MAPE": mape,
            "RMSE": rmse
        }
        #保存
        return result