noiseTY = noiseY noisePY = np.sqrt(2.) * noiseTY kmax = getMax(polComb, tellmaxY, pellmaxY) i += 1 print((i, tellmaxY, pellmaxY, kmax, "delens:", delensTolerance)) bin_edges = np.arange(kmin, kmax, dell) + dell myNls.updateBins(bin_edges) myNls.updateNoise(beamX,noiseTX,noisePX,tellminX,tellmaxX, \ pellminX,pellmaxX,beamY=beamY,noiseTY=noiseTY, \ noisePY=noisePY,tellminY=tellminY,tellmaxY=tellmaxY, \ pellminY=pellminY,pellmaxY=pellmaxY) ls, Nls = myNls.getNl(polComb=polComb, halo=halo) fileName = saveRoot + getFileNameString([ 'gradCut', 'polComb', 'beamY', 'noiseY', 'grad', 'tellminY', 'pellminY', 'tellmaxY', 'pellmaxY', 'kmin', 'deg', 'px' ], [ gradCut, polComb, beamY, noiseY, lab, tellminY, pellminY, tellmaxY, pellmaxY, kmin, deg, px ]) + ".txt" np.savetxt(fileName, np.vstack((ls, Nls)).transpose()) if (polComb == 'EB' or polComb == 'TB') and (delensTolerance is not None): ls, Nls = myNls.iterativeDelens( polComb, delensTolerance, halo)
pixScaleXarcmin=px, pixScaleYarcmin=px) bin_edges = np.arange(kellmin, kellmax, num_ells) myNls = NlGenerator(lmap, theory, bin_edges, gradCut=gradCut) myNls.updateNoise(beam, noiseT, noiseP, tellmin, tellmax, pellmin, pellmax) #### pl = Plotter(scaleY='log') #,scaleX='log') pl.add(ellkk, 4. * Clkk / 2. / np.pi) # CHECK THAT NORM MATCHES HU/OK for polComb, col in zip(polCombList, colorList): if polComb == 'EB': lsold, Nlsold, eff = myNls.iterativeDelens(polComb, 1.0, True) else: lsold, Nlsold = myNls.getNl(polComb=polComb, halo=halo) try: huFile = 'data/hu_' + polComb.lower() + '.csv' huell, hunl = np.loadtxt(huFile, unpack=True, delimiter=',') except: huFile = 'data/hu_' + polComb[::-1].lower() + '.csv' huell, hunl = np.loadtxt(huFile, unpack=True, delimiter=',') pl.add(Ls, 4. * crosses[polComb + polComb] / 2. / np.pi, color=col, label=polComb) #pl.add(Ls,4.*Nls[polComb]/2./np.pi,color=col,alpha=0.2) pl.add(lsold, 4. * Nlsold / 2. / np.pi, color=col, alpha=1.0, ls="-.") #pl.add(huell,hunl,ls='--',color=col)