예제 #1
0
    def test_alternative_dtypes(self):
        shape = [3, 4, 5, 6]
        array = numpy.zeros(shape)

        # Setting dtype to numpy.int64 should produce a torch.LongTensor when field is converted to
        # a tensor
        array_field1 = TensorField(array, dtype=numpy.int64)
        returned_tensor1 = array_field1.as_tensor(
            array_field1.get_padding_lengths())
        assert returned_tensor1.dtype == torch.int64

        # Setting dtype to numpy.uint8 should produce a torch.ByteTensor when field is converted to
        # a tensor
        array_field2 = TensorField(array, dtype=numpy.uint8)
        returned_tensor2 = array_field2.as_tensor(
            array_field2.get_padding_lengths())
        assert returned_tensor2.dtype == torch.uint8

        # Padding should not affect dtype
        padding_lengths = {
            "dimension_" + str(i): 10
            for i, _ in enumerate(shape)
        }
        padded_tensor = array_field2.as_tensor(padding_lengths)
        assert padded_tensor.dtype == torch.uint8

        # Empty fields should have the same dtype
        empty_field = array_field2.empty_field()
        assert empty_field.tensor.dtype == array_field2.tensor.dtype
예제 #2
0
 def test_get_padding_lengths_correctly_returns_ordered_shape(self):
     shape = [3, 4, 5, 6]
     array = numpy.zeros(shape)
     array_field = TensorField(array)
     lengths = array_field.get_padding_lengths()
     for i in range(len(lengths)):
         assert lengths["dimension_{}".format(i)] == shape[i]
예제 #3
0
 def test_as_tensor_with_scalar_keeps_dtype(self):
     array = TensorField(numpy.asarray(42, dtype=numpy.float32))
     returned_tensor = array.as_tensor(array.get_padding_lengths())
     assert returned_tensor.dtype == torch.float32
예제 #4
0
 def test_as_tensor_works_with_scalar(self):
     array = TensorField(numpy.asarray(42))
     returned_tensor = array.as_tensor(array.get_padding_lengths())
     current_tensor = numpy.asarray(42)
     numpy.testing.assert_array_equal(returned_tensor, current_tensor)