def test_overlap_in_correct_cases(self): assert get_metrics(["Green bay packers"], ["Green bay packers"]) == (1.0, 1.0) assert get_metrics(["Green bay", "packers"], ["Green bay", "packers"]) == (1.0, 1.0) assert get_metrics(["Green", "bay", "packers"], ["Green", "bay", "packers"]) == (1.0, 1.0)
def test_multi_span_overlap_in_incorrect_cases(self): # only consider bags with matching numbers if they are present # F1 scores of: 1.0 2/3 0.0 0.0 0.0 0.0 # Average them to get F1 of 0.28 assert get_metrics( ["78-yard", "56", "28", "40", "44", "touchdown"], ["78-yard", "56 yard", "1 yard touchdown"], ) == (0.0, 0.28) # two copies of same value will account for only one match (using optimal 1-1 bag alignment) assert get_metrics(["23", "23 yard"], ["23-yard", "56 yards"]) == (0.0, 0.5) # matching done at individual span level and not pooled into one global bag assert get_metrics(["John Karman", "Joe Hardy"], ["Joe Karman", "John Hardy"]) == (0.0, 0.5) # macro-averaging F1 over spans assert get_metrics(["ottoman", "Kantakouzenous"], ["ottoman", "army of Kantakouzenous"]) == (0.0, 0.75)
def test_simple_overlap_in_incorrect_cases(self): assert get_metrics([""], ["army"]) == (0.0, 0.0) assert get_metrics(["packers"], ["Green bay packers"]) == (0.0, 0.5) assert get_metrics(["packers"], ["Green bay"]) == (0.0, 0.0) # if the numbers in the span don't match f1 is 0 assert get_metrics(["yard"], ["36 yard td"]) == (0.0, 0.0) assert get_metrics(["23 yards"], ["43 yards"]) == (0.0, 0.0) # however, if number matches its not given extra weight over the non-functional words assert get_metrics(["56 yards"], ["56 yd"]) == (0.0, 0.5) assert get_metrics(["26"], ["26 yard td"]) == (0.0, 0.5)
def evaluate_json(annotations: Dict[str, Any], predicted_answers: Dict[str, Any]) -> Tuple[float, float]: """ Takes gold annotations and predicted answers and evaluates the predictions for each question in the gold annotations. Both JSON dictionaries must have query_id keys, which are used to match predictions to gold annotations. The ``predicted_answers`` JSON must be a dictionary keyed by query id, where the value is a list of strings (or just one string) that is the answer. The ``annotations`` are assumed to have either the format of the dev set in the Quoref data release, or the same format as the predicted answers file. """ instance_exact_match = [] instance_f1 = [] if "data" in annotations: # We're looking at annotations in the original data format. Let's extract the answers. annotated_answers = _get_answers_from_data(annotations) else: annotated_answers = annotations for query_id, candidate_answers in annotated_answers.items(): max_em_score = 0.0 max_f1_score = 0.0 if query_id in predicted_answers: predicted = predicted_answers[query_id] gold_answer = tuple(candidate_answers) em_score, f1_score = drop_eval.get_metrics(predicted, gold_answer) if gold_answer[0].strip() != "": max_em_score = max(max_em_score, em_score) max_f1_score = max(max_f1_score, f1_score) else: print("Missing prediction for question: {}".format(query_id)) max_em_score = 0.0 max_f1_score = 0.0 instance_exact_match.append(max_em_score) instance_f1.append(max_f1_score) global_em = np.mean(instance_exact_match) global_f1 = np.mean(instance_f1) print("Exact-match accuracy {0:.2f}".format(global_em * 100)) print("F1 score {0:.2f}".format(global_f1 * 100)) print("{0:.2f} & {1:.2f}".format(global_em * 100, global_f1 * 100)) return global_em, global_f1
def test_metric_is_length_aware(self): # Overall F1 should be mean([1.0, 0.0]) assert get_metrics(predicted=["td"], gold=["td", "td"]) == (0.0, 0.5) assert get_metrics("td", ["td", "td"]) == (0.0, 0.5) # Overall F1 should be mean ([1.0, 0.0]) = 0.5 assert get_metrics(predicted=["td", "td"], gold=["td"]) == (0.0, 0.5) assert get_metrics(predicted=["td", "td"], gold="td") == (0.0, 0.5) # F1 score is mean([0.0, 0.0, 1.0, 0.0, 0.0, 0.0]) assert get_metrics(predicted=[ "the", "fat", "cat", "the fat", "fat cat", "the fat cat" ], gold=["cat"]) == (0.0, 0.17) assert get_metrics( predicted=["cat"], gold=["the", "fat", "cat", "the fat", "fat cat", "the fat cat"]) == (0.0, 0.17) # F1 score is mean([1.0, 0.5, 0.0, 0.0, 0.0, 0.0]) assert get_metrics( predicted=[ "the", "fat", "cat", "the fat", "fat cat", "the fat cat" ], gold=["cat", "cat dog"], ) == (0.0, 0.25)
def test_casing_is_ignored(self): assert get_metrics(["This was a triumph"], ["tHIS Was A TRIUMPH"]) == (1.0, 1.0)
def test_splitting_on_hyphens(self): assert get_metrics(["78-yard"], ["78 yard"]) == (1.0, 1.0) assert get_metrics(["78 yard"], ["78-yard"]) == (1.0, 1.0) assert get_metrics(["78"], ["78-yard"]) == (0.0, 0.67) assert get_metrics(["78-yard"], ["78"]) == (0.0, 0.67)
def test_periods_commas_and_spaces_are_ignored(self): assert get_metrics(["Per.i.o.d...."], [".P....e.r,,i;;;o...d,,"]) == (1.0, 1.0) assert get_metrics(["Spa c e s "], [" Spa c e s"]) == (1.0, 1.0)
def test_f1_ignores_word_order(self): assert get_metrics(["John Elton"], ["Elton John"]) == (0.0, 1.0) assert get_metrics(["50 yard"], ["yard 50"]) == (0.0, 1.0) assert get_metrics(["order word right"], ["right word order"]) == (0.0, 1.0)
def test_articles_are_ignored(self): assert get_metrics(["td"], ["the td"]) == (1.0, 1.0) assert get_metrics(["the a NOT an ARTICLE the an a"], ["NOT ARTICLE"]) == (1.0, 1.0)
def test_float_numbers(self): assert get_metrics(["78"], ["78.0"]) == (1.0, 1.0)
def test_order_invariance(self): assert get_metrics(["a"], ["a", "b"]) == (0, 0.5) assert get_metrics(["b"], ["a", "b"]) == (0, 0.5) assert get_metrics(["b"], ["b", "a"]) == (0, 0.5)