lon = fin.root.lon[:] lat = fin.root.lat[:] d = fin.root.dh_mean_mixed_const_xcal[:] #d = fin.root.dg_mean_xcal[:] #e = fin.root.dh_error_xcal[:] #d = fin.root.n_ad_xcal[:] nz, ny, nx = d.shape dt = ap.year2date(time) if 1: # load area info df_temp = pd.read_csv('ice_shelf_area4.csv') df_area = df_temp['sampled_km2'] df_area.index = df_temp['ice_shelf'] if 1: time, d = ap.time_filt(time, d, from_time=1994, to_time=2013) #time, e = time_filt(time, e, from_time=1992, to_time=20013) # area-average #--------------------------------------------------------------------- df = pd.DataFrame(index=time) df2 = pd.DataFrame(index=time) for k, s in zip(names, shelves): shelf, x, y = ap.get_subset(s, d, lon, lat) #error, x, y = ap.get_subset(s, e, lon, lat) A = ap.get_area_cells(shelf[10], x, y) ts, _ = ap.area_weighted_mean(shelf, A) #ts2, _ = ap.area_weighted_mean(error, A) df[k] = ts #df2[k] = ts2
print('done') if 0: # (for testing only) subset print lon.shape, lat.shape, data.shape i, j = ap.where_isnan('Totten', lon, lat) data[:,i,j] = np.nan ''' plt.imshow(data[10], origin='lower', interpolation='nearest', extent=(lon.min(), lon.max(), lat.min(), lat.max()), aspect='auto') plt.show() exit() ''' if 1: # (yes) filter time _, data = ap.time_filt(time, data, from_time=1994, to_time=2013) time, error = ap.time_filt(time, error, from_time=1994, to_time=2013) dt = ap.year2date(time) # remove bad grid cells (visual inspection) if 1: ii, jj = ap.find_nearest2(xx, yy, lonlat) k = 0 for i, j in zip(ii, jj): print k, lonlat[k] ''' plt.plot(time, data[:,i,j]) plt.show() ''' data[:,i,j] = np.nan