def test_wrong_file_name(): """Ensure file names are checked when creating a (custom) Dataset.""" wrong_files = [('does_not_exist', 'does_not_either')] with pytest.raises(ValueError): Dataset.load_from_folds(folds_files=wrong_files, reader=Reader(), rating_scale=(1, 5))
def test_gridsearchcv_same_splits(): """Ensure that all parameter combinations are tested on the same splits (we check their RMSE scores are the same once averaged over the splits, which should be enough). We use as much parallelism as possible.""" data_file = os.path.join(os.path.dirname(__file__), './u1_ml100k_test') data = Dataset.load_from_file(data_file, reader=Reader('ml-100k'), rating_scale=(1, 5)) kf = KFold(3, shuffle=True, random_state=4) # all RMSE should be the same (as param combinations are the same) param_grid = {'n_epochs': [5], 'lr_all': [.2, .2], 'reg_all': [.4, .4], 'n_factors': [5], 'random_state': [0]} gs = GridSearchCV(SVD, param_grid, measures=['RMSE'], cv=kf, n_jobs=1) gs.fit(data) rmse_scores = [m for m in gs.cv_results['mean_test_rmse']] assert len(set(rmse_scores)) == 1 # assert rmse_scores are all equal # Note: actually, even when setting random_state=None in kf, the same folds # are used because we use product(param_comb, kf.split(...)). However, it's # needed to have the same folds when calling fit again: gs.fit(data) rmse_scores += [m for m in gs.cv_results['mean_test_rmse']] assert len(set(rmse_scores)) == 1 # assert rmse_scores are all equal
def test_zero_rating_canary(): ratings_dict = {'itemID': [0, 0, 0, 0, 1, 1], 'userID': [0, 1, 2, 3, 3, 4], 'rating': [-10, 10, 0, -5, 0, 5]} df = pd.DataFrame(ratings_dict) data = Dataset.load_from_df(df[['userID', 'itemID', 'rating']], rating_scale=(-10, 10)) trainset = data.build_full_trainset() # test ur and ir fields. Kind of OK, but the purpose of the test is # precisely to test what would happen if we removed them... assert trainset.ir[0] == [(0, -10), (1, 10), (2, 0), (3, -5)] assert trainset.ir[1] == [(3, 0), (4, 5)] assert trainset.ur[0] == [(0, -10)] assert trainset.ur[1] == [(0, 10)] assert trainset.ur[2] == [(0, 0)] assert trainset.ur[3] == [(0, -5), (1, 0)] assert trainset.ur[4] == [(1, 5)] print(trainset.ur) # ... so also test all_ratings which should be more reliable. all_ratings = list(trainset.all_ratings()) assert (0, 0, -10) in all_ratings assert (1, 0, 10) in all_ratings assert (2, 0, 0) in all_ratings assert (3, 0, -5) in all_ratings assert (3, 1, 0) in all_ratings assert (4, 1, 5) in all_ratings
def test_cross_validate(toy_data): # First test with a specified CV iterator. current_dir = os.path.dirname(os.path.realpath(__file__)) folds_files = [(current_dir + '/custom_train', current_dir + '/custom_test')] reader = Reader(line_format='user item rating', sep=' ', skip_lines=3) data = Dataset.load_from_folds(folds_files=folds_files, reader=reader, rating_scale=(1, 5)) algo = NormalPredictor() pkf = ms.PredefinedKFold() ret = ms.cross_validate(algo, data, measures=['rmse', 'mae'], cv=pkf, verbose=1) # Basically just test that keys (dont) exist as they should assert len(ret['test_rmse']) == 1 assert len(ret['test_mae']) == 1 assert len(ret['fit_time']) == 1 assert len(ret['test_time']) == 1 assert 'test_fcp' not in ret assert 'train_rmse' not in ret assert 'train_mae' not in ret # Test that 5 fold CV is used when cv=None # Also check that train_* key exist when return_train_measures is True. ret = ms.cross_validate(algo, toy_data, measures=['rmse', 'mae'], cv=None, return_train_measures=True, verbose=True) assert len(ret['test_rmse']) == 5 assert len(ret['test_mae']) == 5 assert len(ret['fit_time']) == 5 assert len(ret['test_time']) == 5 assert len(ret['train_rmse']) == 5 assert len(ret['train_mae']) == 5
def test_randomizedsearchcv_cv_results(): """Test the cv_results attribute""" f = os.path.join(os.path.dirname(__file__), './u1_ml100k_test') data = Dataset.load_from_file(f, Reader('ml-100k'), rating_scale=(1, 5)) kf = KFold(3, shuffle=True, random_state=4) param_distributions = {'n_epochs': [5], 'lr_all': uniform(.2, .3), 'reg_all': uniform(.4, .3), 'n_factors': [5], 'random_state': [0]} n_iter = 5 rs = RandomizedSearchCV(SVD, param_distributions, n_iter=n_iter, measures=['RMSE', 'mae'], cv=kf, return_train_measures=True) rs.fit(data) # test keys split*_test_rmse, mean and std dev. assert rs.cv_results['split0_test_rmse'].shape == (n_iter,) assert rs.cv_results['split1_test_rmse'].shape == (n_iter,) assert rs.cv_results['split2_test_rmse'].shape == (n_iter,) assert rs.cv_results['mean_test_rmse'].shape == (n_iter,) assert np.allclose(rs.cv_results['mean_test_rmse'], np.mean([rs.cv_results['split0_test_rmse'], rs.cv_results['split1_test_rmse'], rs.cv_results['split2_test_rmse']], axis=0)) assert np.allclose(rs.cv_results['std_test_rmse'], np.std([rs.cv_results['split0_test_rmse'], rs.cv_results['split1_test_rmse'], rs.cv_results['split2_test_rmse']], axis=0)) # test keys split*_train_mae, mean and std dev. assert rs.cv_results['split0_train_rmse'].shape == (n_iter,) assert rs.cv_results['split1_train_rmse'].shape == (n_iter,) assert rs.cv_results['split2_train_rmse'].shape == (n_iter,) assert rs.cv_results['mean_train_rmse'].shape == (n_iter,) assert np.allclose(rs.cv_results['mean_train_rmse'], np.mean([rs.cv_results['split0_train_rmse'], rs.cv_results['split1_train_rmse'], rs.cv_results['split2_train_rmse']], axis=0)) assert np.allclose(rs.cv_results['std_train_rmse'], np.std([rs.cv_results['split0_train_rmse'], rs.cv_results['split1_train_rmse'], rs.cv_results['split2_train_rmse']], axis=0)) # test fit and train times dimensions. assert rs.cv_results['mean_fit_time'].shape == (n_iter,) assert rs.cv_results['std_fit_time'].shape == (n_iter,) assert rs.cv_results['mean_test_time'].shape == (n_iter,) assert rs.cv_results['std_test_time'].shape == (n_iter,) assert rs.cv_results['params'] is rs.param_combinations # assert that best parameter in rs.cv_results['rank_test_measure'] is # indeed the best_param attribute. best_index = np.argmin(rs.cv_results['rank_test_rmse']) assert rs.cv_results['params'][best_index] == rs.best_params['rmse'] best_index = np.argmin(rs.cv_results['rank_test_mae']) assert rs.cv_results['params'][best_index] == rs.best_params['mae']
def small_ml(): """Return a Dataset object with 2000 movielens-100k ratings. """ data_file = os.path.join(os.path.dirname(__file__), './u1_ml100k_test') data = Dataset.load_from_file(data_file, Reader('ml-100k'), rating_scale=(1, 5)) return data
def toy_data(toy_data_reader): toy_data_path = (os.path.dirname(os.path.realpath(__file__)) + '/custom_dataset') data = Dataset.load_from_file(file_path=toy_data_path, reader=toy_data_reader, rating_scale=(1, 5)) return data
def u1_ml100k(): """Return a Dataset object that contains 10% of the u1 fold from movielens 100k. Trainset has 8000 ratings and testset has 2000. """ train_file = os.path.join(os.path.dirname(__file__), './u1_ml100k_train') test_file = os.path.join(os.path.dirname(__file__), './u1_ml100k_test') data = Dataset.load_from_folds([(train_file, test_file)], Reader('ml-100k'), rating_scale=(1, 5)) return data
def test_load_form_df(): """Ensure reading dataset from pandas dataframe is OK.""" # DF creation. ratings_dict = { 'itemID': [1, 1, 1, 2, 2], 'userID': [9, 32, 2, 45, '10000'], 'rating': [3, 2, 4, 3, 1] } df = pd.DataFrame(ratings_dict) data = Dataset.load_from_df(df[['userID', 'itemID', 'rating']], rating_scale=(1, 5)) # Assert split and folds can be used without problems with pytest.warns(UserWarning): data.split(2) assert sum(1 for _ in data.folds()) == 2 # assert users and items are correctly mapped trainset = data.build_full_trainset() assert trainset.knows_user(trainset.to_inner_uid(9)) assert trainset.knows_user(trainset.to_inner_uid('10000')) assert trainset.knows_item(trainset.to_inner_iid(2)) # assert r(9, 1) = 3 and r(2, 1) = 4 uid9 = trainset.to_inner_uid(9) uid2 = trainset.to_inner_uid(2) iid1 = trainset.to_inner_iid(1) assert trainset.ur[uid9] == [(iid1, 3)] assert trainset.ur[uid2] == [(iid1, 4)] # mess up the column ordering and assert that users are not correctly # mapped data = Dataset.load_from_df(df[['rating', 'itemID', 'userID']], rating_scale=(1, 5)) trainset = data.build_full_trainset() with pytest.raises(ValueError): trainset.to_inner_uid('10000')
def test_nearest_neighbors(): """Ensure the nearest neighbors are different when using user-user similarity vs item-item.""" reader = Reader(line_format='user item rating', sep=' ', skip_lines=3) data_file = os.path.dirname(os.path.realpath(__file__)) + '/custom_train' data = Dataset.load_from_file(data_file, reader, rating_scale=(1, 5)) trainset = data.build_full_trainset() algo_ub = KNNBasic(sim_options={'user_based': True}) algo_ub.fit(trainset) algo_ib = KNNBasic(sim_options={'user_based': False}) algo_ib.fit(trainset) assert algo_ub.get_neighbors(0, k=10) != algo_ib.get_neighbors(0, k=10)
def test_gridsearchcv_refit(u1_ml100k): """Test refit function of GridSearchCV.""" data_file = os.path.join(os.path.dirname(__file__), './u1_ml100k_test') data = Dataset.load_from_file(data_file, Reader('ml-100k'), rating_scale=(1, 5)) param_grid = {'n_epochs': [5], 'lr_all': [0.002, 0.005], 'reg_all': [0.4, 0.6], 'n_factors': [2]} # assert gs.fit() and gs.test will use best estimator for mae (first # appearing in measures) gs = GridSearchCV(SVD, param_grid, measures=['mae', 'rmse'], cv=2, refit=True) gs.fit(data) gs_preds = gs.test(data.construct_testset(data.raw_ratings)) mae_preds = gs.best_estimator['mae'].test( data.construct_testset(data.raw_ratings)) assert gs_preds == mae_preds # assert gs.fit() and gs.test will use best estimator for rmse gs = GridSearchCV(SVD, param_grid, measures=['mae', 'rmse'], cv=2, refit='rmse') gs.fit(data) gs_preds = gs.test(data.construct_testset(data.raw_ratings)) rmse_preds = gs.best_estimator['rmse'].test( data.construct_testset(data.raw_ratings)) assert gs_preds == rmse_preds # test that predict() can be called gs.predict(2, 4) # assert test() and predict() cannot be used when refit is false gs = GridSearchCV(SVD, param_grid, measures=['mae', 'rmse'], cv=2, refit=False) gs.fit(data) with pytest.raises(ValueError): gs_preds = gs.test(data.construct_testset(data.raw_ratings)) with pytest.raises(ValueError): gs.predict('1', '2') # test that error is raised if used with load_from_folds gs = GridSearchCV(SVD, param_grid, measures=['mae', 'rmse'], cv=2, refit=True) with pytest.raises(ValueError): gs.fit(u1_ml100k)
def test_randomizedsearchcv_refit(u1_ml100k): """Test refit method of RandomizedSearchCV class.""" data_file = os.path.join(os.path.dirname(__file__), './u1_ml100k_test') data = Dataset.load_from_file(data_file, Reader('ml-100k'), rating_scale=(1, 5)) param_distributions = {'n_epochs': [5], 'lr_all': uniform(0.002, 0.003), 'reg_all': uniform(0.4, 0.2), 'n_factors': [2]} # assert rs.fit() and rs.test will use best estimator for mae (first # appearing in measures) rs = RandomizedSearchCV(SVD, param_distributions, measures=['mae', 'rmse'], cv=2, refit=True) rs.fit(data) rs_preds = rs.test(data.construct_testset(data.raw_ratings)) mae_preds = rs.best_estimator['mae'].test( data.construct_testset(data.raw_ratings)) assert rs_preds == mae_preds # assert rs.fit() and rs.test will use best estimator for rmse rs = RandomizedSearchCV(SVD, param_distributions, measures=['mae', 'rmse'], cv=2, refit='rmse') rs.fit(data) rs_preds = rs.test(data.construct_testset(data.raw_ratings)) rmse_preds = rs.best_estimator['rmse'].test( data.construct_testset(data.raw_ratings)) assert rs_preds == rmse_preds # test that predict() can be called rs.predict(2, 4) # assert test() and predict() cannot be used when refit is false rs = RandomizedSearchCV(SVD, param_distributions, measures=['mae', 'rmse'], cv=2, refit=False) rs.fit(data) with pytest.raises(ValueError): rs.test(data.construct_testset(data.raw_ratings)) with pytest.raises(ValueError): rs.predict('1', '2') # test that error is raised if used with load_from_folds rs = RandomizedSearchCV(SVD, param_distributions, measures=['mae', 'rmse'], cv=2, refit=True) with pytest.raises(ValueError): rs.fit(u1_ml100k)
def test_deprecated_way(): """Test all Dataset constructors without passing rating_scale as a parameter. Make sure we revert back to the Reader object, with a warning message. Also, make sure ValueError is raised if reader has no rating_scale in this context. Not using dataset fixtures here for more control. """ # test load_from_file toy_data_path = (os.path.dirname(os.path.realpath(__file__)) + '/custom_dataset') with pytest.warns(UserWarning): reader = Reader(line_format='user item rating', sep=' ', skip_lines=3, rating_scale=(1, 5)) data = Dataset.load_from_file(file_path=toy_data_path, reader=reader) with pytest.raises(ValueError): reader = Reader(line_format='user item rating', sep=' ', skip_lines=3, rating_scale=None) data = Dataset.load_from_file(file_path=toy_data_path, reader=reader) # test load_from_folds train_file = os.path.join(os.path.dirname(__file__), './u1_ml100k_train') test_file = os.path.join(os.path.dirname(__file__), './u1_ml100k_test') with pytest.warns(UserWarning): reader = Reader(line_format='user item rating timestamp', sep='\t', rating_scale=(1, 5)) data = Dataset.load_from_folds([(train_file, test_file)], reader=reader) with pytest.raises(ValueError): reader = Reader(line_format='user item rating timestamp', sep='\t', rating_scale=None) data = Dataset.load_from_folds([(train_file, test_file)], reader=reader) # test load_from_df ratings_dict = {'itemID': [1, 1, 1, 2, 2], 'userID': [9, 32, 2, 45, '10000'], 'rating': [3, 2, 4, 3, 1]} df = pd.DataFrame(ratings_dict) with pytest.warns(UserWarning): reader = Reader(rating_scale=(1, 5)) data = Dataset.load_from_df(df[['userID', 'itemID', 'rating']], reader=reader) with pytest.raises(ValueError): reader = Reader(rating_scale=None) data = Dataset.load_from_df(df[['userID', 'itemID', 'rating']], # noqa reader=reader)
def test_LeaveOneOut(toy_data): loo = LeaveOneOut() with pytest.raises(ValueError): next(loo.split(toy_data)) # each user only has 1 item so trainsets fail reader = Reader('ml-100k') data_path = (os.path.dirname(os.path.realpath(__file__)) + '/u1_ml100k_test') data = Dataset.load_from_file(file_path=data_path, reader=reader, rating_scale=(1, 5)) # Test random_state parameter # If random_state is None, you get different split each time (conditioned # by rng of course) loo = LeaveOneOut(random_state=None) testsets_a = [testset for (_, testset) in loo.split(data)] testsets_b = [testset for (_, testset) in loo.split(data)] assert testsets_a != testsets_b # Repeated called to split when random_state is set lead to the same folds loo = LeaveOneOut(random_state=1) testsets_a = [testset for (_, testset) in loo.split(data)] testsets_b = [testset for (_, testset) in loo.split(data)] assert testsets_a == testsets_b # Make sure only one rating per user is present in the testset loo = LeaveOneOut() for _, testset in loo.split(data): cnt = Counter([uid for (uid, _, _) in testset]) assert all(val == 1 for val in itervalues(cnt)) # test the min_n_ratings parameter loo = LeaveOneOut(min_n_ratings=5) for trainset, _ in loo.split(data): assert all(len(ratings) >= 5 for ratings in itervalues(trainset.ur)) loo = LeaveOneOut(min_n_ratings=10) for trainset, _ in loo.split(data): assert all(len(ratings) >= 10 for ratings in itervalues(trainset.ur)) loo = LeaveOneOut(min_n_ratings=10000) # too high with pytest.raises(ValueError): next(loo.split(data))
def test_PredifinedKFold(toy_data_reader): current_dir = os.path.dirname(os.path.realpath(__file__)) folds_files = [(current_dir + '/custom_train', current_dir + '/custom_test')] data = Dataset.load_from_folds(folds_files=folds_files, reader=toy_data_reader, rating_scale=(1, 5)) # Make sure rating files are read correctly pkf = PredefinedKFold() trainset, testset = next(pkf.split(data)) assert trainset.n_ratings == 6 assert len(testset) == 3 # Make sure pkf returns the same folds as the deprecated data.folds() with pytest.warns(UserWarning): trainset_, testset_ = next(data.folds()) assert testset_ == testset
def test_performances(): """Test the returned dict. Also do dumping.""" current_dir = os.path.dirname(os.path.realpath(__file__)) folds_files = [(current_dir + '/custom_train', current_dir + '/custom_test')] reader = Reader(line_format='user item rating', sep=' ', skip_lines=3) data = Dataset.load_from_folds(folds_files=folds_files, reader=reader, rating_scale=(1, 5)) algo = NormalPredictor() tmp_dir = tempfile.mkdtemp() # create tmp dir with pytest.warns(UserWarning): performances = evaluate(algo, data, measures=['RmSe', 'Mae'], with_dump=True, dump_dir=tmp_dir, verbose=2) shutil.rmtree(tmp_dir) # remove tmp dir assert performances['RMSE'] is performances['rmse'] assert performances['MaE'] is performances['mae']
def test_build_anti_testset(): ratings_dict = { 'itemID': [1, 2, 3, 4, 5, 6, 7, 8, 9], 'userID': [1, 2, 3, 4, 5, 6, 7, 8, 9], 'rating': [1, 2, 3, 4, 5, 6, 7, 8, 9] } df = pd.DataFrame(ratings_dict) data = Dataset.load_from_df(df[['userID', 'itemID', 'rating']], rating_scale=(1, 5)) with pytest.warns(UserWarning): data.split(2) trainset, __testset = next(data.folds()) # fill with some specific value for fillvalue in (0, 42., -1): anti = trainset.build_anti_testset(fill=fillvalue) for (u, i, r) in anti: assert r == fillvalue # fill with global_mean anti = trainset.build_anti_testset(fill=None) for (u, i, r) in anti: assert r == trainset.global_mean expect = trainset.n_users * trainset.n_items assert trainset.n_ratings + len(anti) == expect
""" This module descibes how to load a custom dataset from a single file. As a custom dataset we will actually use the movielens-100k dataset, but act as if it were not built-in. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import os from amaze import BaselineOnly from amaze import Dataset from amaze import Reader from amaze.model_selection import cross_validate # path to dataset file file_path = os.path.expanduser('~/.amaze_data/ml-100k/ml-100k/u.data') # As we're loading a custom dataset, we need to define a reader. In the # movielens-100k dataset, each line has the following format: # 'user item rating timestamp', separated by '\t' characters. reader = Reader(line_format='user item rating timestamp', sep='\t') data = Dataset.load_from_file(file_path, reader=reader, rating_scale=(1, 5)) # We can now use this dataset as we please, e.g. calling cross_validate cross_validate(BaselineOnly(), data, verbose=True)
""" This module descibes how to load a dataset from a pandas dataframe. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import pandas as pd from amaze import NormalPredictor from amaze import Dataset from amaze.model_selection import cross_validate # Creation of the dataframe. Column names are irrelevant. ratings_dict = { 'itemID': [1, 1, 1, 2, 2], 'userID': [9, 32, 2, 45, 'user_foo'], 'rating': [3, 2, 4, 3, 1] } df = pd.DataFrame(ratings_dict) # The columns must correspond to user id, item id and ratings (in that order). data = Dataset.load_from_df(df[['userID', 'itemID', 'rating']], rating_scale=(1, 5)) # We can now use this dataset as we please, e.g. calling cross_validate cross_validate(NormalPredictor(), data, cv=2)
from amaze import Dataset from amaze import Reader from amaze import accuracy from amaze.model_selection import PredefinedKFold # path to dataset folder files_dir = os.path.expanduser('~/.amaze_data/ml-100k/ml-100k/') # This time, we'll use the built-in reader. reader = Reader('ml-100k') # folds_files is a list of tuples containing file paths: # [(u1.base, u1.test), (u2.base, u2.test), ... (u5.base, u5.test)] train_file = files_dir + 'u%d.base' test_file = files_dir + 'u%d.test' folds_files = [(train_file % i, test_file % i) for i in (1, 2, 3, 4, 5)] data = Dataset.load_from_folds(folds_files, reader=reader, rating_scale=(1, 5)) pkf = PredefinedKFold() algo = SVD() for trainset, testset in pkf.split(data): # train and test algorithm. algo.fit(trainset) predictions = algo.test(testset) # Compute and print Root Mean Squared Error accuracy.rmse(predictions, verbose=True)
def test_trainset_testset(toy_data_reader): """Test the construct_trainset and construct_testset methods.""" current_dir = os.path.dirname(os.path.realpath(__file__)) folds_files = [(current_dir + '/custom_train', current_dir + '/custom_test')] data = Dataset.load_from_folds(folds_files=folds_files, reader=toy_data_reader, rating_scale=(1, 5)) with pytest.warns(UserWarning): trainset, testset = next(data.folds()) # test ur ur = trainset.ur assert ur[0] == [(0, 4)] assert ur[1] == [(0, 4), (1, 2)] assert ur[40] == [] # not in the trainset # test ir ir = trainset.ir assert ir[0] == [(0, 4), (1, 4), (2, 1)] assert ir[1] == [(1, 2), (2, 1), (3, 5)] assert ir[20000] == [] # not in the trainset # test n_users, n_items, n_ratings, rating_scale assert trainset.n_users == 4 assert trainset.n_items == 2 assert trainset.n_ratings == 6 assert trainset.rating_scale == (1, 5) # test raw2inner for i in range(4): assert trainset.to_inner_uid('user' + str(i)) == i with pytest.raises(ValueError): trainset.to_inner_uid('unkown_user') for i in range(2): assert trainset.to_inner_iid('item' + str(i)) == i with pytest.raises(ValueError): trainset.to_inner_iid('unkown_item') # test inner2raw assert trainset._inner2raw_id_users is None assert trainset._inner2raw_id_items is None for i in range(4): assert trainset.to_raw_uid(i) == 'user' + str(i) for i in range(2): assert trainset.to_raw_iid(i) == 'item' + str(i) assert trainset._inner2raw_id_users is not None assert trainset._inner2raw_id_items is not None # Test the build_testset() method algo = BaselineOnly() algo.fit(trainset) testset = trainset.build_testset() algo.test(testset) # ensure an algorithm can manage the data assert ('user0', 'item0', 4) in testset assert ('user3', 'item1', 5) in testset assert ('user3', 'item1', 0) not in testset # Test the build_anti_testset() method algo = BaselineOnly() algo.fit(trainset) testset = trainset.build_anti_testset() algo.test(testset) # ensure an algorithm can manage the data assert ('user0', 'item0', trainset.global_mean) not in testset assert ('user3', 'item1', trainset.global_mean) not in testset assert ('user0', 'item1', trainset.global_mean) in testset assert ('user3', 'item0', trainset.global_mean) in testset
'NormalPredictor': '[{}]({})'.format('Random', stable + 'basic_algorithms.html#amaze.prediction_algorithms.random_pred.NormalPredictor'), 'ml-100k': '[{}]({})'.format('Movielens 100k', 'http://grouplens.org/datasets/movielens/100k'), 'ml-1m': '[{}]({})'.format('Movielens 1M', 'http://grouplens.org/datasets/movielens/1m'), } # set RNG np.random.seed(0) random.seed(0) dataset = 'ml-1m' data = Dataset.load_builtin(dataset) kf = KFold(random_state=0) # folds will be the same for all algorithms. table = [] for klass in classes: start = time.time() out = cross_validate(klass(), data, ['rmse', 'mae'], kf) cv_time = str(datetime.timedelta(seconds=int(time.time() - start))) link = LINK[klass.__name__] mean_rmse = '{:.3f}'.format(np.mean(out['test_rmse'])) mean_mae = '{:.3f}'.format(np.mean(out['test_mae'])) new_line = [link, mean_rmse, mean_mae, cv_time] print(tabulate([new_line], tablefmt="pipe")) # print current algo perf table.append(new_line)
""" This module gives an example of how to configure similarity measures computation. """ from __future__ import (absolute_import, division, print_function, unicode_literals) from amaze import KNNBasic from amaze import Dataset from amaze.model_selection import cross_validate # Load the movielens-100k dataset. data = Dataset.load_builtin('ml-100k') # Example using cosine similarity sim_options = { 'name': 'cosine', 'user_based': False # compute similarities between items } algo = KNNBasic(sim_options=sim_options) cross_validate(algo, data, verbose=True) # Example using pearson_baseline similarity sim_options = { 'name': 'pearson_baseline', 'shrinkage': 0 # no shrinkage } algo = KNNBasic(sim_options=sim_options)