예제 #1
0
    def build_and_fill2(self, name, dims):
        T = ambit.Tensor(ambit.TensorType.kCore, name, dims)
        N = [[0 for x in range(dims[1])] for x in range(dims[0])]

        data = T.tensor.data()
        for r in range(dims[0]):
            for c in range(dims[1]):
                value = random.random()

                data[r * dims[1] + c] = value
                N[r][c] = value

        return [T, N]
예제 #2
0
    def build_and_fill3(self, name, dims):
        T = ambit.Tensor(ambit.TensorType.CoreTensor, name, dims)
        N = [[[0 for x in range(dims[2])] for x in range(dims[1])] for x in range(dims[0])]

        data = T.tensor.data()
        for p in range(dims[0]):
            for q in range(dims[1]):
                for r in range(dims[2]):
                    value = random.random()

                    data[p*dims[1]*dims[2] + q*dims[2] + r] = value
                    N[p][q][r] = value

        return [T, N]
예제 #3
0
파일: np_test.py 프로젝트: yudongqiu/ambit
    def build(self, name, dims, ttype=tensor_type, fill=None):
        # Builds arbitrary Tensors and numpy arrys
        # Accepts a list of integers or a string for dimensions

        if ttype != ambit.TensorType.kCore:
            raise ValueError("Only kCore is currently supported")

        if isinstance(dims, str):
            dims = [dim_size_dict[i] for i in dims]

        T = ambit.Tensor(ttype, name, dims)

        # Fill both N and T
        N = np.asarray(T)
        if fill:
            N.flat[:] = fill
        else:
            N.flat[:] = np.arange(np.prod(dims))

        # Copy numpy array so we no longer share memory
        N = N.copy()

        return [T, N]
예제 #4
0
 def __init__(self, world, dims, syms):
     self.factor = 1.0
     self.world = world
     self.dims = dims
     self.syms = syms
     self.tensor = ambit.Tensor(world, dims, syms)