def setUp(self):
     TestBase.setUp(self)
     self.correlation_rule = CorrelationRule('Correlation', 1, 1.2, max_artefacts_a_for_single_b=1, artefact_match_parameters=[
         ('/model/sequence1/Value2Value', '/model/sequence2/Value3Value')])
     self.a_class_selector = EventClassSelector('Selector1', [self.correlation_rule], None)
     self.b_class_selector = EventClassSelector('Selector2', None, [self.correlation_rule])
     self.rules = []
     self.rules.append(Rules.PathExistsMatchRule('/model/sequence1/Value2Key', self.a_class_selector))
     self.rules.append(Rules.PathExistsMatchRule('/model/sequence2/Value3Key', self.b_class_selector))
    def create_random_rule(self, log_atom):
        """Create a random existing path rule or value match rule."""
        parser_match = log_atom.parser_match
        sub_rules = []
        all_keys = list(parser_match.get_match_dictionary().keys())
        attribute_count = get_log_int(self.max_rule_attributes) + 1
        while attribute_count > 0:
            key_pos = random.randint(0, len(all_keys) - 1)
            key_name = all_keys[key_pos]
            all_keys = all_keys[:key_pos] + all_keys[key_pos + 1:]
            key_value = parser_match.get_match_dictionary().get(key_name).match_object
            # Not much sense handling parsed date values in this implementation, so just ignore this attribute.
            if (isinstance(key_value, tuple)) and (isinstance(key_value[0], datetime)):
                if not all_keys:
                    break
                continue

            attribute_count -= 1
            rule_type = random.randint(0, 1)
            if rule_type == 0:
                sub_rules.append(Rules.PathExistsMatchRule(key_name))
            elif rule_type == 1:
                sub_rules.append(Rules.ValueMatchRule(key_name, key_value))
            else:
                raise Exception('Invalid rule type')
            if not all_keys:
                break

        if len(sub_rules) > 1:
            return Rules.AndMatchRule(sub_rules)
        if len(sub_rules) > 0:
            return sub_rules[0]
        return None
예제 #3
0
    def create_random_rule(self, log_atom):
        """Create a random existing path rule or value match rule."""
        parser_match = log_atom.parser_match
        sub_rules = []
        all_keys = list(parser_match.get_match_dictionary().keys())
        attribute_count = self.min_rule_attributes + get_log_int(
            self.max_rule_attributes - self.min_rule_attributes)

        while attribute_count > 0:
            key_pos = random.randint(0, len(all_keys) - 1)
            key_name = all_keys[key_pos]
            all_keys = all_keys[:key_pos] + all_keys[key_pos + 1:]
            key_value = parser_match.get_match_dictionary().get(
                key_name).match_object
            # Not much sense handling parsed date values in this implementation, so just ignore this attribute.
            if (isinstance(key_value, tuple)) and (isinstance(
                    key_value[0], datetime)):
                if not all_keys:
                    break
                continue

            attribute_count -= 1
            rule_type = 1  # default is value_match only if none specified
            if self.use_path_match and not self.use_value_match:
                rule_type = 0
            if not self.use_path_match and self.use_value_match:
                rule_type = 1
            if self.use_path_match and self.use_value_match:
                rule_type = random.randint(0, 1)
            if rule_type == 0:
                sub_rules.append(Rules.PathExistsMatchRule(key_name))
            elif rule_type == 1:
                sub_rules.append(Rules.ValueMatchRule(key_name, key_value))
            else:
                msg = 'Invalid rule type'
                logging.getLogger(DEBUG_LOG_NAME).error(msg)
                raise Exception(msg)
            if not all_keys:
                break

        if len(sub_rules) > 1:
            return Rules.AndMatchRule(sub_rules)
        if len(sub_rules) > 0:
            return sub_rules[0]
        return None
예제 #4
0
def build_analysis_pipeline(analysis_context):
    """
    Define the function to create pipeline for parsing the log data.
    It has also to define an AtomizerFactory to instruct aminer how to process incoming data streams to create log atoms from them.
    """
    # Build the parsing model:

    service_children_disk_report = [
        FixedDataModelElement(
            'Space',
            b' Current Disk Data is: Filesystem     Type  Size  Used Avail Use%'
        ),
        DelimitedDataModelElement('Data', b'%'),
        AnyByteDataModelElement('Rest')
    ]

    service_children_login_details = [
        FixedDataModelElement('User', b'User '),
        DelimitedDataModelElement('Username', b' '),
        FixedWordlistDataModelElement('Status',
                                      [b' logged in', b' logged out']),
        OptionalMatchModelElement(
            'PastTime',
            SequenceModelElement('Time', [
                FixedDataModelElement('Blank', b' '),
                DecimalIntegerValueModelElement('Minutes'),
                FixedDataModelElement('Ago', b' minutes ago.')
            ]))
    ]

    service_children_cron_job = [
        DateTimeModelElement('DTM', b'%Y-%m-%d %H:%M:%S'),
        FixedDataModelElement('UNameSpace1', b' '),
        DelimitedDataModelElement('UName', b' '),
        FixedDataModelElement('UNameSpace2', b' '),
        DelimitedDataModelElement('User', b' '),
        FixedDataModelElement('Cron', b' cron['),
        DecimalIntegerValueModelElement('JobNumber'),
        FixedDataModelElement('Details', b']: Job `cron.daily` started.')
    ]

    service_children_random_time = [
        FixedDataModelElement('Space', b'Random: '),
        DecimalIntegerValueModelElement('Random')
    ]

    service_children_sensors = [
        SequenceModelElement('CPUTemp', [
            FixedDataModelElement('FixedTemp', b'CPU Temp: '),
            DecimalIntegerValueModelElement('Temp'),
            FixedDataModelElement('Degrees', b'\xc2\xb0C')
        ]),
        FixedDataModelElement('Space1', b', '),
        SequenceModelElement('CPUWorkload', [
            FixedDataModelElement('FixedWorkload', b'CPUWorkload: '),
            DecimalIntegerValueModelElement('Workload'),
            FixedDataModelElement('Percent', b'%')
        ]),
        FixedDataModelElement('Space2', b', '),
        DateTimeModelElement('DTM', b'%Y-%m-%d %H:%M:%S')
    ]

    service_children_user_ip_address = [
        FixedDataModelElement('User', b'User '),
        DelimitedDataModelElement('Username', b' '),
        FixedDataModelElement('Action', b' changed IP address to '),
        IpAddressDataModelElement('IP')
    ]

    service_children_cron_job_announcement = [
        DateTimeModelElement('DTM', b'%Y-%m-%d %H:%M:%S'),
        FixedDataModelElement('Space', b' '),
        DelimitedDataModelElement('UName', b' '),
        FixedDataModelElement('Cron', b' cron['),
        DecimalIntegerValueModelElement('JobNumber'),
        FixedDataModelElement('Run', b']: Will run job `'),
        FixedWordlistDataModelElement(
            'CronType',
            [b'cron.daily', b'cron.hourly', b'cron.monthly', b'cron.weekly']),
        FixedDataModelElement('StartTime', b'\' in 5 min.')
    ]

    service_children_cron_job_execution = [
        DateTimeModelElement('DTM', b'%Y-%m-%d %H:%M:%S'),
        FixedDataModelElement('Space1', b' '),
        DelimitedDataModelElement('UName', b' '),
        FixedDataModelElement('Cron', b' cron['),
        DecimalIntegerValueModelElement('JobNumber'),
        FixedDataModelElement('Job', b']: Job `'),
        FixedWordlistDataModelElement(
            'CronType',
            [b'cron.daily', b'cron.hourly', b'cron.monthly', b'cron.weekly']),
        FixedDataModelElement('Started', b'\' started')
    ]

    parsing_model = FirstMatchModelElement('model', [
        SequenceModelElement('CronAnnouncement',
                             service_children_cron_job_announcement),
        SequenceModelElement('CronExecution',
                             service_children_cron_job_execution),
        SequenceModelElement('DailyCron', service_children_cron_job),
        SequenceModelElement('DiskReport', service_children_disk_report),
        SequenceModelElement('LoginDetails', service_children_login_details),
        DecimalIntegerValueModelElement('Random'),
        SequenceModelElement('RandomTime', service_children_random_time),
        SequenceModelElement('Sensors', service_children_sensors),
        SequenceModelElement('IPAddresses', service_children_user_ip_address)
    ])

    # Some generic imports.
    from aminer.analysis import AtomFilters

    # Create all global handler lists here and append the real handlers later on.
    # Use this filter to distribute all atoms to the analysis handlers.
    atom_filters = AtomFilters.SubhandlerFilter(None)
    analysis_context.register_component(atom_filters,
                                        component_name="AtomFilter")

    from aminer.analysis.TimestampCorrectionFilters import SimpleMonotonicTimestampAdjust
    simple_monotonic_timestamp_adjust = SimpleMonotonicTimestampAdjust(
        [atom_filters])
    analysis_context.register_component(
        simple_monotonic_timestamp_adjust,
        component_name="SimpleMonotonicTimestampAdjust")

    from aminer.events.StreamPrinterEventHandler import StreamPrinterEventHandler
    stream_printer_event_handler = StreamPrinterEventHandler(
        analysis_context)  # skipcq: BAN-B108
    from aminer.events.Utils import VolatileLogarithmicBackoffEventHistory
    volatile_logarithmic_backoff_event_history = VolatileLogarithmicBackoffEventHistory(
        100)
    anomaly_event_handlers = [
        stream_printer_event_handler,
        volatile_logarithmic_backoff_event_history
    ]
    analysis_context.register_component(
        volatile_logarithmic_backoff_event_history,
        component_name="VolatileLogarithmicBackoffEventHistory")

    # Now define the AtomizerFactory using the model. A simple line based one is usually sufficient.
    from aminer.input.SimpleByteStreamLineAtomizerFactory import SimpleByteStreamLineAtomizerFactory
    analysis_context.atomizer_factory = SimpleByteStreamLineAtomizerFactory(
        parsing_model, [simple_monotonic_timestamp_adjust],
        anomaly_event_handlers)

    # Just report all unparsed atoms to the event handlers.
    from aminer.analysis.UnparsedAtomHandlers import SimpleUnparsedAtomHandler
    simple_unparsed_atom_handler = SimpleUnparsedAtomHandler(
        anomaly_event_handlers)
    atom_filters.add_handler(simple_unparsed_atom_handler,
                             stop_when_handled_flag=True)
    analysis_context.register_component(simple_unparsed_atom_handler,
                                        component_name="UnparsedHandler")

    from aminer.analysis.TimestampsUnsortedDetector import TimestampsUnsortedDetector
    timestamps_unsorted_detector = TimestampsUnsortedDetector(
        analysis_context.aminer_config, anomaly_event_handlers)
    atom_filters.add_handler(timestamps_unsorted_detector)
    analysis_context.register_component(
        timestamps_unsorted_detector,
        component_name="TimestampsUnsortedDetector")

    from aminer.analysis import Rules
    from aminer.analysis.AllowlistViolationDetector import AllowlistViolationDetector
    allowlist_rules = [
        Rules.OrMatchRule([
            Rules.AndMatchRule([
                Rules.PathExistsMatchRule(
                    '/model/LoginDetails/PastTime/Time/Minutes'),
                Rules.NegationMatchRule(
                    Rules.ValueMatchRule('/model/LoginDetails/Username',
                                         b'root'))
            ]),
            Rules.AndMatchRule([
                Rules.NegationMatchRule(
                    Rules.PathExistsMatchRule(
                        '/model/LoginDetails/PastTime/Time/Minutes')),
                Rules.PathExistsMatchRule('/model/LoginDetails')
            ]),
            Rules.NegationMatchRule(
                Rules.PathExistsMatchRule('/model/LoginDetails'))
        ])
    ]

    # This rule list should trigger, when the line does not look like: User root (logged in, logged out)
    # or User 'username' (logged in, logged out) x minutes ago.
    allowlist_violation_detector = AllowlistViolationDetector(
        analysis_context.aminer_config, allowlist_rules,
        anomaly_event_handlers)
    analysis_context.register_component(allowlist_violation_detector,
                                        component_name="Allowlist")
    atom_filters.add_handler(allowlist_violation_detector)

    from aminer.analysis.ParserCount import ParserCount
    parser_count = ParserCount(analysis_context.aminer_config, None,
                               anomaly_event_handlers, 10)
    analysis_context.register_component(parser_count,
                                        component_name="ParserCount")
    atom_filters.add_handler(parser_count)

    from aminer.analysis.EventCorrelationDetector import EventCorrelationDetector
    ecd = EventCorrelationDetector(analysis_context.aminer_config,
                                   anomaly_event_handlers,
                                   check_rules_flag=True,
                                   hypothesis_max_delta_time=1.0,
                                   auto_include_flag=True)
    analysis_context.register_component(
        ecd, component_name="EventCorrelationDetector")
    atom_filters.add_handler(ecd)

    from aminer.analysis.NewMatchPathDetector import NewMatchPathDetector
    new_match_path_detector = NewMatchPathDetector(
        analysis_context.aminer_config,
        anomaly_event_handlers,
        auto_include_flag=True)
    analysis_context.register_component(new_match_path_detector,
                                        component_name="NewMatchPath")
    atom_filters.add_handler(new_match_path_detector)

    def tuple_transformation_function(match_value_list):
        """Only allow output of the EnhancedNewMatchPathValueComboDetector after every 10000th element."""
        extra_data = enhanced_new_match_path_value_combo_detector.known_values_dict.get(
            tuple(match_value_list))
        if extra_data is not None:
            mod = 10000
            if (extra_data[2] + 1) % mod == 0:
                enhanced_new_match_path_value_combo_detector.auto_include_flag = False
            else:
                enhanced_new_match_path_value_combo_detector.auto_include_flag = True
        return match_value_list

    from aminer.analysis.EnhancedNewMatchPathValueComboDetector import EnhancedNewMatchPathValueComboDetector
    enhanced_new_match_path_value_combo_detector = EnhancedNewMatchPathValueComboDetector(
        analysis_context.aminer_config,
        ['/model/DailyCron/UName', '/model/DailyCron/JobNumber'],
        anomaly_event_handlers,
        auto_include_flag=False,
        tuple_transformation_function=tuple_transformation_function)
    analysis_context.register_component(
        enhanced_new_match_path_value_combo_detector,
        component_name="EnhancedNewValueCombo")
    atom_filters.add_handler(enhanced_new_match_path_value_combo_detector)

    from aminer.analysis.HistogramAnalysis import HistogramAnalysis, LinearNumericBinDefinition, ModuloTimeBinDefinition, \
        PathDependentHistogramAnalysis
    modulo_time_bin_definition = ModuloTimeBinDefinition(
        86400, 3600, 0, 1, 24, True)
    linear_numeric_bin_definition = LinearNumericBinDefinition(50, 5, 20, True)
    histogram_analysis = HistogramAnalysis(
        analysis_context.aminer_config,
        [('/model/RandomTime/Random', modulo_time_bin_definition),
         ('/model/Random', linear_numeric_bin_definition)], 10,
        anomaly_event_handlers)
    analysis_context.register_component(histogram_analysis,
                                        component_name="HistogramAnalysis")
    atom_filters.add_handler(histogram_analysis)

    path_dependent_histogram_analysis = PathDependentHistogramAnalysis(
        analysis_context.aminer_config, '/model/RandomTime',
        modulo_time_bin_definition, 10, anomaly_event_handlers)
    analysis_context.register_component(
        path_dependent_histogram_analysis,
        component_name="PathDependentHistogramAnalysis")
    atom_filters.add_handler(path_dependent_histogram_analysis)

    from aminer.analysis.MatchValueAverageChangeDetector import MatchValueAverageChangeDetector
    match_value_average_change_detector = MatchValueAverageChangeDetector(
        analysis_context.aminer_config, anomaly_event_handlers, None,
        ['/model/Random'], 100, 10)
    analysis_context.register_component(
        match_value_average_change_detector,
        component_name="MatchValueAverageChange")
    atom_filters.add_handler(match_value_average_change_detector)

    import sys
    from aminer.analysis.MatchValueStreamWriter import MatchValueStreamWriter
    match_value_stream_writer = MatchValueStreamWriter(sys.stdout, [
        '/model/Sensors/CPUTemp', '/model/Sensors/CPUWorkload',
        '/model/Sensors/DTM'
    ], b';', b'')
    analysis_context.register_component(
        match_value_stream_writer, component_name="MatchValueStreamWriter")
    atom_filters.add_handler(match_value_stream_writer)

    from aminer.analysis.NewMatchPathValueComboDetector import NewMatchPathValueComboDetector
    new_match_path_value_combo_detector = NewMatchPathValueComboDetector(
        analysis_context.aminer_config,
        ['/model/IPAddresses/Username', '/model/IPAddresses/IP'],
        anomaly_event_handlers,
        auto_include_flag=False)
    analysis_context.register_component(
        new_match_path_value_combo_detector,
        component_name="NewMatchPathValueCombo")
    atom_filters.add_handler(new_match_path_value_combo_detector)

    from aminer.analysis.NewMatchIdValueComboDetector import NewMatchIdValueComboDetector
    new_match_id_value_combo_detector = NewMatchIdValueComboDetector(
        analysis_context.aminer_config,
        ['/model/type/path/name', '/model/type/syscall/syscall'],
        anomaly_event_handlers,
        id_path_list=['/model/type/path/id', '/model/type/syscall/id'],
        min_allowed_time_diff=5,
        auto_include_flag=True,
        allow_missing_values_flag=True,
        output_log_line=True)
    analysis_context.register_component(
        new_match_id_value_combo_detector,
        component_name="NewMatchIdValueComboDetector")
    atom_filters.add_handler(new_match_id_value_combo_detector)

    from aminer.analysis.NewMatchPathValueDetector import NewMatchPathValueDetector
    new_match_path_value_detector = NewMatchPathValueDetector(
        analysis_context.aminer_config,
        ['/model/DailyCron/Job Number', '/model/IPAddresses/Username'],
        anomaly_event_handlers,
        auto_include_flag=False)
    analysis_context.register_component(new_match_path_value_detector,
                                        component_name="NewMatchPathValue")
    atom_filters.add_handler(new_match_path_value_detector)

    from aminer.analysis.MissingMatchPathValueDetector import MissingMatchPathValueDetector
    missing_match_path_value_detector = MissingMatchPathValueDetector(
        analysis_context.aminer_config, ['/model/DiskReport/Space'],
        anomaly_event_handlers,
        auto_include_flag=False,
        default_interval=2,
        realert_interval=5)
    analysis_context.register_component(missing_match_path_value_detector,
                                        component_name="MissingMatch")
    atom_filters.add_handler(missing_match_path_value_detector)

    from aminer.analysis.TimeCorrelationDetector import TimeCorrelationDetector
    time_correlation_detector = TimeCorrelationDetector(
        analysis_context.aminer_config,
        anomaly_event_handlers,
        2,
        min_rule_attributes=1,
        max_rule_attributes=5,
        record_count_before_event=70000,
        output_log_line=True)
    analysis_context.register_component(
        time_correlation_detector, component_name="TimeCorrelationDetector")
    atom_filters.add_handler(time_correlation_detector)

    from aminer.analysis.TimeCorrelationViolationDetector import TimeCorrelationViolationDetector, CorrelationRule, EventClassSelector
    cron_job_announcement = CorrelationRule(
        'CronJobAnnouncement',
        5,
        6,
        max_artefacts_a_for_single_b=1,
        artefact_match_parameters=[('/model/CronAnnouncement/JobNumber',
                                    '/model/CronExecution/JobNumber')])
    a_class_selector = EventClassSelector('Announcement',
                                          [cron_job_announcement], None)
    b_class_selector = EventClassSelector('Execution', None,
                                          [cron_job_announcement])
    rules = [
        Rules.PathExistsMatchRule('/model/CronAnnouncement/Run',
                                  a_class_selector),
        Rules.PathExistsMatchRule('/model/CronExecution/Job', b_class_selector)
    ]

    time_correlation_violation_detector = TimeCorrelationViolationDetector(
        analysis_context.aminer_config, rules, anomaly_event_handlers)
    analysis_context.register_component(
        time_correlation_violation_detector,
        component_name="TimeCorrelationViolationDetector")
    atom_filters.add_handler(time_correlation_violation_detector)

    from aminer.events.DefaultMailNotificationEventHandler import DefaultMailNotificationEventHandler
    if DefaultMailNotificationEventHandler.CONFIG_KEY_MAIL_TARGET_ADDRESS in analysis_context.aminer_config.config_properties:
        mail_notification_handler = DefaultMailNotificationEventHandler(
            analysis_context)
        analysis_context.register_component(mail_notification_handler,
                                            component_name="MailHandler")
        anomaly_event_handlers.append(mail_notification_handler)
def build_analysis_pipeline(analysis_context):
    """
    Define the function to create pipeline for parsing the log data.
    It has also to define an AtomizerFactory to instruct aminer how to process incoming data streams to create log atoms from them.
    """
    date_format_string = b'%Y-%m-%d %H:%M:%S'
    cron = b' cron['

    # Build the parsing model:

    service_children_disk_report = [
        FixedDataModelElement('Space', b' Current Disk Data is: Filesystem     Type  Size  Used Avail Use%'),
        DelimitedDataModelElement('Data', b'%'), AnyByteDataModelElement('Rest')]

    service_children_login_details = [
        FixedDataModelElement('User/LoginDetails', b'User '), DelimitedDataModelElement('Username', b' '),
        FixedWordlistDataModelElement('Status', [b' logged in', b' logged out']),
        OptionalMatchModelElement('PastTime', SequenceModelElement('Time', [
            FixedDataModelElement('Blank', b' '), DecimalIntegerValueModelElement('Minutes'),
            FixedDataModelElement('Ago', b' minutes ago.')]))]

    service_children_cron_job = [
        DateTimeModelElement('DTM', date_format_string), FixedDataModelElement('UNameSpace1', b' '),
        DelimitedDataModelElement('UName', b' '), FixedDataModelElement('UNameSpace2', b' '), DelimitedDataModelElement('User', b' '),
        FixedDataModelElement('Cron', cron), DecimalIntegerValueModelElement('JobNumber'),
        FixedDataModelElement('Details', b']: Job `cron.daily` started.')]

    service_children_random_time = [FixedDataModelElement('Space', b'Random: '), DecimalIntegerValueModelElement('Random')]

    service_children_sensors = [SequenceModelElement('CPUTemp', [
        FixedDataModelElement('FixedTemp', b'CPU Temp: '), DecimalIntegerValueModelElement('Temp'),
        FixedDataModelElement('Degrees', b'\xc2\xb0C')]), FixedDataModelElement('Space1', b', '), SequenceModelElement('CPUWorkload', [
            FixedDataModelElement('FixedWorkload', b'CPU Workload: '), DecimalIntegerValueModelElement('Workload'),
            FixedDataModelElement('Percent', b'%')]), FixedDataModelElement('Space2', b', '),
        DateTimeModelElement('DTM', date_format_string)]

    service_children_user_ip_address = [
        FixedDataModelElement('User/UserIPAddress', b'User '), DelimitedDataModelElement('Username', b' '),
        FixedDataModelElement('Action', b' changed IP address to '), IpAddressDataModelElement('IP')]

    service_children_cron_job_announcement = [
        DateTimeModelElement('DTM', date_format_string), FixedDataModelElement('Space', b' '),
        DelimitedDataModelElement('UName', b' '), FixedDataModelElement('Cron', cron), DecimalIntegerValueModelElement('JobNumber'),
        FixedDataModelElement('Run', b']: Will run job `'),
        FixedWordlistDataModelElement('CronType', [b'cron.daily', b'cron.hourly', b'cron.monthly', b'cron.weekly']),
        FixedDataModelElement('StartTime', b'\' in 5 min.')]

    service_children_cron_job_execution = [
        DateTimeModelElement('DTM', date_format_string), FixedDataModelElement('Space1', b' '),
        DelimitedDataModelElement('UName', b' '), FixedDataModelElement('Cron', cron), DecimalIntegerValueModelElement('JobNumber'),
        FixedDataModelElement('Job', b']: Job `'),
        FixedWordlistDataModelElement('CronType', [b'cron.daily', b'cron.hourly', b'cron.monthly', b'cron.weekly']),
        FixedDataModelElement('Started', b'\' started')]

    service_children_audit = [SequenceModelElement('path', [
        FixedDataModelElement('type', b'type=PATH '), FixedDataModelElement('msg_audit', b'msg=audit('),
        DelimitedDataModelElement('msg', b':'), FixedDataModelElement('placeholder', b':'), DecimalIntegerValueModelElement('id'),
        FixedDataModelElement('item_string', b'): item='), DecimalIntegerValueModelElement('item'),
        FixedDataModelElement('name_string', b' name="'), DelimitedDataModelElement('name', b'"'),
        FixedDataModelElement('inode_string', b'" inode='), DecimalIntegerValueModelElement('inode'),
        FixedDataModelElement('dev_string', b' dev='), DelimitedDataModelElement('dev', b' '),
        FixedDataModelElement('mode_string', b' mode='),
        DecimalIntegerValueModelElement('mode', value_pad_type=DecimalIntegerValueModelElement.PAD_TYPE_ZERO),
        FixedDataModelElement('ouid_string', b' ouid='), DecimalIntegerValueModelElement('ouid'),
        FixedDataModelElement('ogid_string', b' ogid='), DecimalIntegerValueModelElement('ogid'),
        FixedDataModelElement('rdev_string', b' rdev='), DelimitedDataModelElement('rdev', b' '),
        FixedDataModelElement('nametype_string', b' nametype='), FixedWordlistDataModelElement('nametype', [b'NORMAL', b'ERROR'])]),
        SequenceModelElement('syscall', [
            FixedDataModelElement('type', b'type=SYSCALL '), FixedDataModelElement('msg_audit', b'msg=audit('),
            DelimitedDataModelElement('msg', b':'), FixedDataModelElement('placeholder', b':'), DecimalIntegerValueModelElement('id'),
            FixedDataModelElement('arch_string', b'): arch='), DelimitedDataModelElement('arch', b' '),
            FixedDataModelElement('syscall_string', b' syscall='), DecimalIntegerValueModelElement('syscall'),
            FixedDataModelElement('success_string', b' success='), FixedWordlistDataModelElement('success', [b'yes', b'no']),
            FixedDataModelElement('exit_string', b' exit='), DecimalIntegerValueModelElement('exit'),
            AnyByteDataModelElement('remainding_data')])]

    service_children_parsing_model_element = [
        DateTimeModelElement('DateTimeModelElement', b'Current DateTime: %d.%m.%Y %H:%M:%S'),
        DecimalFloatValueModelElement('DecimalFloatValueModelElement', value_sign_type='optional'),
        DecimalIntegerValueModelElement('DecimalIntegerValueModelElement', value_sign_type='optional', value_pad_type='blank'),
        SequenceModelElement('se', [
            DelimitedDataModelElement('DelimitedDataModelElement', b';'), FixedDataModelElement('FixedDataModelElement', b';')])]

    # ElementValueBranchModelElement
    fixed_data_me1 = FixedDataModelElement("fixed1", b'match ')
    fixed_data_me2 = FixedDataModelElement("fixed2", b'fixed String')
    fixed_wordlist_data_model_element = FixedWordlistDataModelElement("wordlist", [b'data: ', b'string: '])
    decimal_integer_value_model_element = DecimalIntegerValueModelElement("decimal")

    service_children_parsing_model_element.append(
        ElementValueBranchModelElement('ElementValueBranchModelElement', FirstMatchModelElement("first", [
            SequenceModelElement("seq1", [fixed_data_me1, fixed_wordlist_data_model_element]),
            SequenceModelElement("seq2", [fixed_data_me1, fixed_wordlist_data_model_element, fixed_data_me2])]), "wordlist",
                                 {0: decimal_integer_value_model_element, 1: fixed_data_me2}))
    service_children_parsing_model_element.append(HexStringModelElement('HexStringModelElement'))
    service_children_parsing_model_element.append(SequenceModelElement('se2', [
        FixedDataModelElement('FixedDataModelElement', b'Gateway IP-Address: '), IpAddressDataModelElement('IpAddressDataModelElement')]))
    import locale
    loc = locale.getlocale()
    if loc == (None, None):
        loc = ('en_US', 'utf8')
    service_children_parsing_model_element.append(
        MultiLocaleDateTimeModelElement('MultiLocaleDateTimeModelElement', [(b'%b %d %Y', None, '%s.%s' % loc)]))
    service_children_parsing_model_element.append(
        RepeatedElementDataModelElement('RepeatedElementDataModelElement', SequenceModelElement('SequenceModelElement', [
            FixedDataModelElement('FixedDataModelElement', b'[drawn number]: '),
            DecimalIntegerValueModelElement('DecimalIntegerValueModelElement')]), 1))
    service_children_parsing_model_element.append(VariableByteDataModelElement('VariableByteDataModelElement', b'-@#'))
    service_children_parsing_model_element.append(SequenceModelElement('se', [
        WhiteSpaceLimitedDataModelElement('WhiteSpaceLimitedDataModelElement'), FixedDataModelElement('fixed', b' ')]))

    # The Base64StringModelElement must be just before the AnyByteDataModelElement to avoid unexpected Matches.
    service_children_parsing_model_element.append(Base64StringModelElement('Base64StringModelElement'))

    # The OptionalMatchModelElement must be paired with a FirstMatchModelElement because it accepts all data and thus no data gets
    # to the AnyByteDataModelElement. The AnyByteDataModelElement must be last, because all bytes are accepted.
    service_children_parsing_model_element.append(
        OptionalMatchModelElement('/', FirstMatchModelElement('FirstMatchModelElement//optional', [
            FixedDataModelElement('FixedDataModelElement', b'The-searched-element-was-found!'), SequenceModelElement('se', [
                FixedDataModelElement('FixedDME', b'Any:'), AnyByteDataModelElement('AnyByteDataModelElement')])])))

    alphabet = b'ghijkl'
    service_children_ecd = []
    for _, char in enumerate(alphabet):
        char = bytes([char])
        service_children_ecd.append(FixedDataModelElement(char.decode(), char))

    parsing_model = FirstMatchModelElement('model', [
        SequenceModelElement('CronAnnouncement', service_children_cron_job_announcement),
        SequenceModelElement('CronExecution', service_children_cron_job_execution),
        SequenceModelElement('DailyCron', service_children_cron_job), SequenceModelElement('DiskReport', service_children_disk_report),
        SequenceModelElement('LoginDetails', service_children_login_details), DecimalIntegerValueModelElement('Random'),
        SequenceModelElement('RandomTime', service_children_random_time), SequenceModelElement('Sensors', service_children_sensors),
        SequenceModelElement('IPAddresses', service_children_user_ip_address), FirstMatchModelElement('type', service_children_audit),
        FirstMatchModelElement('ECD', service_children_ecd), FirstMatchModelElement('ParsingME', service_children_parsing_model_element)])

    # Some generic imports.
    from aminer.analysis import AtomFilters

    # Create all global handler lists here and append the real handlers later on.
    # Use this filter to distribute all atoms to the analysis handlers.
    atom_filter = AtomFilters.SubhandlerFilter(None)

    from aminer.analysis.TimestampCorrectionFilters import SimpleMonotonicTimestampAdjust
    simple_monotonic_timestamp_adjust = SimpleMonotonicTimestampAdjust([atom_filter])
    analysis_context.register_component(simple_monotonic_timestamp_adjust, component_name="SimpleMonotonicTimestampAdjust")

    from aminer.events.StreamPrinterEventHandler import StreamPrinterEventHandler
    from aminer.events.JsonConverterHandler import JsonConverterHandler
    stream_printer_event_handler = StreamPrinterEventHandler(analysis_context)
    json_converter_handler = JsonConverterHandler([stream_printer_event_handler], analysis_context)
    anomaly_event_handlers = [json_converter_handler]

    # Now define the AtomizerFactory using the model. A simple line based one is usually sufficient.
    from aminer.input.SimpleByteStreamLineAtomizerFactory import SimpleByteStreamLineAtomizerFactory
    analysis_context.atomizer_factory = SimpleByteStreamLineAtomizerFactory(parsing_model, [simple_monotonic_timestamp_adjust],
                                                                            anomaly_event_handlers)

    # Just report all unparsed atoms to the event handlers.
    from aminer.analysis.UnparsedAtomHandlers import SimpleUnparsedAtomHandler, VerboseUnparsedAtomHandler
    simple_unparsed_atom_handler = SimpleUnparsedAtomHandler(anomaly_event_handlers)
    atom_filter.add_handler(simple_unparsed_atom_handler, stop_when_handled_flag=False)
    analysis_context.register_component(simple_unparsed_atom_handler, component_name="SimpleUnparsedHandler")

    verbose_unparsed_atom_handler = VerboseUnparsedAtomHandler(anomaly_event_handlers, parsing_model)
    atom_filter.add_handler(verbose_unparsed_atom_handler, stop_when_handled_flag=True)
    analysis_context.register_component(verbose_unparsed_atom_handler, component_name="VerboseUnparsedHandler")

    from aminer.analysis.TimestampsUnsortedDetector import TimestampsUnsortedDetector
    timestamps_unsorted_detector = TimestampsUnsortedDetector(analysis_context.aminer_config, anomaly_event_handlers)
    atom_filter.add_handler(timestamps_unsorted_detector)
    analysis_context.register_component(timestamps_unsorted_detector, component_name="TimestampsUnsortedDetector")

    from aminer.analysis import Rules
    from aminer.analysis.AllowlistViolationDetector import AllowlistViolationDetector
    allowlist_rules = [
        Rules.OrMatchRule([
            Rules.AndMatchRule([
                Rules.PathExistsMatchRule('/model/LoginDetails/PastTime/Time/Minutes'),
                Rules.NegationMatchRule(Rules.ValueMatchRule('/model/LoginDetails/Username', b'root')),
                Rules.DebugMatchRule(debug_match_result=True)]),
            Rules.AndMatchRule([
                Rules.NegationMatchRule(Rules.PathExistsMatchRule('/model/LoginDetails/PastTime/Time/Minutes')),
                Rules.PathExistsMatchRule('/model/LoginDetails'),
                Rules.DebugMatchRule(debug_match_result=True)]),
            Rules.NegationMatchRule(Rules.PathExistsMatchRule('/model/LoginDetails'))])]

    # This rule list should trigger, when the line does not look like: User root (logged in, logged out)
    # or User 'username' (logged in, logged out) x minutes ago.
    allowlist_violation_detector = AllowlistViolationDetector(analysis_context.aminer_config, allowlist_rules, anomaly_event_handlers,
                                                              output_log_line=True)
    analysis_context.register_component(allowlist_violation_detector, component_name="Allowlist")
    atom_filter.add_handler(allowlist_violation_detector)

    from aminer.analysis.ParserCount import ParserCount
    parser_count = ParserCount(analysis_context.aminer_config, None, anomaly_event_handlers, 10)
    analysis_context.register_component(parser_count, component_name="ParserCount")
    atom_filter.add_handler(parser_count)

    from aminer.analysis.EventTypeDetector import EventTypeDetector
    etd = EventTypeDetector(analysis_context.aminer_config, anomaly_event_handlers)
    analysis_context.register_component(etd, component_name="EventTypeDetector")
    atom_filter.add_handler(etd)

    from aminer.analysis.VariableTypeDetector import VariableTypeDetector
    vtd = VariableTypeDetector(analysis_context.aminer_config, anomaly_event_handlers, etd, silence_output_except_indicator=False,
                               output_log_line=False, ignore_list=["/model/RandomTime"])
    analysis_context.register_component(vtd, component_name="VariableTypeDetector")
    atom_filter.add_handler(vtd)

    from aminer.analysis.VariableCorrelationDetector import VariableCorrelationDetector
    vtd = VariableCorrelationDetector(analysis_context.aminer_config, anomaly_event_handlers, etd, disc_div_thres=0.5,
                                      ignore_list=["/model/RandomTime"])
    analysis_context.register_component(vtd, component_name="VariableCorrelationDetector")
    atom_filter.add_handler(vtd)

    from aminer.analysis.EventCorrelationDetector import EventCorrelationDetector
    ecd = EventCorrelationDetector(analysis_context.aminer_config, anomaly_event_handlers, check_rules_flag=True,
                                   hypothesis_max_delta_time=1.0)
    analysis_context.register_component(ecd, component_name="EventCorrelationDetector")
    atom_filter.add_handler(ecd)

    from aminer.analysis.EventFrequencyDetector import EventFrequencyDetector
    efd = EventFrequencyDetector(analysis_context.aminer_config, anomaly_event_handlers, window_size=0.1)
    analysis_context.register_component(efd, component_name="EventFrequencyDetector")
    atom_filter.add_handler(efd)

    from aminer.analysis.EventSequenceDetector import EventSequenceDetector
    esd = EventSequenceDetector(analysis_context.aminer_config, anomaly_event_handlers, ['/model/ParsingME'], ignore_list=[
        '/model/ECD/g', '/model/ECD/h', '/model/ECD/i', '/model/ECD/j', '/model/ECD/k', '/model/ECD/l', '/model/Random',
        '/model/RandomTime', '/model/DailyCron'])
    analysis_context.register_component(esd, component_name="EventSequenceDetector")
    atom_filter.add_handler(esd)

    from aminer.analysis.MatchFilter import MatchFilter
    match_filter = MatchFilter(analysis_context.aminer_config, ['/model/Random'], anomaly_event_handlers, target_value_list=[
        1, 10, 100], output_log_line=True)
    analysis_context.register_component(match_filter, component_name="MatchFilter")
    atom_filter.add_handler(match_filter)

    from aminer.analysis.NewMatchPathDetector import NewMatchPathDetector
    new_match_path_detector = NewMatchPathDetector(analysis_context.aminer_config, anomaly_event_handlers, auto_include_flag=True,
                                                   output_log_line=True)
    analysis_context.register_component(new_match_path_detector, component_name="NewMatchPath")
    atom_filter.add_handler(new_match_path_detector)

    def tuple_transformation_function(match_value_list):
        """Only allow output of the EnhancedNewMatchPathValueComboDetector after every 10th element."""
        extra_data = enhanced_new_match_path_value_combo_detector.known_values_dict.get(tuple(match_value_list))
        if extra_data is not None:
            mod = 10
            if (extra_data[2] + 1) % mod == 0:
                enhanced_new_match_path_value_combo_detector.auto_include_flag = False
            else:
                enhanced_new_match_path_value_combo_detector.auto_include_flag = True
        return match_value_list

    from aminer.analysis.EnhancedNewMatchPathValueComboDetector import EnhancedNewMatchPathValueComboDetector
    enhanced_new_match_path_value_combo_detector = EnhancedNewMatchPathValueComboDetector(analysis_context.aminer_config, [
        '/model/DailyCron/UName', '/model/DailyCron/JobNumber'], anomaly_event_handlers, auto_include_flag=True,
        tuple_transformation_function=tuple_transformation_function, output_log_line=True)
    analysis_context.register_component(enhanced_new_match_path_value_combo_detector, component_name="EnhancedNewValueCombo")
    atom_filter.add_handler(enhanced_new_match_path_value_combo_detector)

    import re
    ip_match_action = Rules.EventGenerationMatchAction(
        "Analysis.Rules.IPv4InRFC1918MatchRule", "Private IP address occurred!", anomaly_event_handlers)

    vdmt = Rules.ValueDependentModuloTimeMatchRule(None, 3, ["/model/ECD/j", "/model/ECD/k", "/model/ECD/l"], {b"e": [0, 2.95]}, [0, 3])
    mt = Rules.ModuloTimeMatchRule(None, 3, 0, 3, None)
    time_allowlist_rules = [
        Rules.AndMatchRule([
            Rules.ParallelMatchRule([
                Rules.ValueDependentDelegatedMatchRule([
                    '/model/ECD/g', '/model/ECD/h', '/model/ECD/i', '/model/ECD/j', '/model/ECD/k', '/model/ECD/l'], {
                        (b"a",): mt, (b"b",): mt, (b"c",): mt, (b"d",): vdmt, (b"e",): vdmt, (b"f",): vdmt, None: mt}, mt),
                Rules.IPv4InRFC1918MatchRule("/model/ParsingME/se2/IpAddressDataModelElement", ip_match_action),
                Rules.DebugHistoryMatchRule(debug_match_result=True)
            ]),
            # IP addresses 8.8.8.8, 8.8.4.4 and 10.0.0.0 - 10.255.255.255 are not allowed
            Rules.NegationMatchRule(Rules.ValueListMatchRule("/model/ParsingME/se2/IpAddressDataModelElement", [134744072, 134743044])),
            Rules.NegationMatchRule(Rules.ValueRangeMatchRule("/model/ParsingME/se2/IpAddressDataModelElement", 167772160, 184549375)),
            Rules.NegationMatchRule(Rules.StringRegexMatchRule("/model/type/syscall/success", re.compile(b"^no$")))
        ])
    ]
    time_allowlist_violation_detector = AllowlistViolationDetector(
        analysis_context.aminer_config, time_allowlist_rules, anomaly_event_handlers, output_log_line=True)
    analysis_context.register_component(time_allowlist_violation_detector, component_name="TimeAllowlist")
    atom_filter.add_handler(time_allowlist_violation_detector)

    from aminer.analysis.HistogramAnalysis import HistogramAnalysis, LinearNumericBinDefinition, ModuloTimeBinDefinition, \
        PathDependentHistogramAnalysis
    modulo_time_bin_definition = ModuloTimeBinDefinition(86400, 3600, 0, 1, 24, True)
    linear_numeric_bin_definition = LinearNumericBinDefinition(50, 5, 20, True)
    histogram_analysis = HistogramAnalysis(analysis_context.aminer_config, [
        ('/model/RandomTime/Random', modulo_time_bin_definition), ('/model/Random', linear_numeric_bin_definition)], 10,
        anomaly_event_handlers, output_log_line=True)
    analysis_context.register_component(histogram_analysis, component_name="HistogramAnalysis")
    atom_filter.add_handler(histogram_analysis)

    path_dependent_histogram_analysis = PathDependentHistogramAnalysis(
        analysis_context.aminer_config, '/model/RandomTime', modulo_time_bin_definition, 10, anomaly_event_handlers, output_log_line=True)
    analysis_context.register_component(path_dependent_histogram_analysis, component_name="PathDependentHistogramAnalysis")
    atom_filter.add_handler(path_dependent_histogram_analysis)

    from aminer.analysis.MatchValueAverageChangeDetector import MatchValueAverageChangeDetector
    match_value_average_change_detector = MatchValueAverageChangeDetector(analysis_context.aminer_config, anomaly_event_handlers, None, [
        '/model/Random'], 100, 10, output_log_line=True)
    analysis_context.register_component(match_value_average_change_detector, component_name="MatchValueAverageChange")
    atom_filter.add_handler(match_value_average_change_detector)

    import sys
    from aminer.analysis.MatchValueStreamWriter import MatchValueStreamWriter
    match_value_stream_writer = MatchValueStreamWriter(
        sys.stdout, ['/model/Sensors/CPUTemp', '/model/Sensors/CPUWorkload', '/model/Sensors/DTM'], b';', b'')
    analysis_context.register_component(match_value_stream_writer, component_name="MatchValueStreamWriter")
    atom_filter.add_handler(match_value_stream_writer)

    from aminer.analysis.NewMatchPathValueComboDetector import NewMatchPathValueComboDetector
    new_match_path_value_combo_detector = NewMatchPathValueComboDetector(
        analysis_context.aminer_config, ['/model/IPAddresses/Username', '/model/IPAddresses/IP'],
        anomaly_event_handlers, output_log_line=True)
    analysis_context.register_component(new_match_path_value_combo_detector, component_name="NewMatchPathValueCombo")
    atom_filter.add_handler(new_match_path_value_combo_detector)

    from aminer.analysis.NewMatchIdValueComboDetector import NewMatchIdValueComboDetector
    new_match_id_value_combo_detector = NewMatchIdValueComboDetector(analysis_context.aminer_config, [
        '/model/type/path/name', '/model/type/syscall/syscall'], anomaly_event_handlers, id_path_list=[
        '/model/type/path/id', '/model/type/syscall/id'], min_allowed_time_diff=5, auto_include_flag=True, allow_missing_values_flag=True,
        output_log_line=True)
    analysis_context.register_component(new_match_id_value_combo_detector, component_name="NewMatchIdValueComboDetector")
    atom_filter.add_handler(new_match_id_value_combo_detector)

    from aminer.analysis.NewMatchPathValueDetector import NewMatchPathValueDetector
    new_match_path_value_detector = NewMatchPathValueDetector(analysis_context.aminer_config, [
        '/model/DailyCron/JobNumber', '/model/IPAddresses/Username'], anomaly_event_handlers, auto_include_flag=True, output_log_line=True)
    analysis_context.register_component(new_match_path_value_detector, component_name="NewMatchPathValue")
    atom_filter.add_handler(new_match_path_value_detector)

    from aminer.analysis.MissingMatchPathValueDetector import MissingMatchPathValueDetector
    missing_match_path_value_detector = MissingMatchPathValueDetector(
        analysis_context.aminer_config, ['/model/DiskReport/Space'], anomaly_event_handlers, auto_include_flag=True, default_interval=2,
        realert_interval=5, output_log_line=True)
    analysis_context.register_component(missing_match_path_value_detector, component_name="MissingMatch")
    atom_filter.add_handler(missing_match_path_value_detector)

    from aminer.analysis.TimeCorrelationDetector import TimeCorrelationDetector
    time_correlation_detector = TimeCorrelationDetector(
        analysis_context.aminer_config, anomaly_event_handlers, 2, min_rule_attributes=1, max_rule_attributes=5,
        record_count_before_event=10000, output_log_line=True)
    analysis_context.register_component(time_correlation_detector, component_name="TimeCorrelationDetector")
    atom_filter.add_handler(time_correlation_detector)

    from aminer.analysis.TimeCorrelationViolationDetector import TimeCorrelationViolationDetector, CorrelationRule, EventClassSelector
    cron_job_announcement = CorrelationRule('CronJobAnnouncement', 5, 6, max_artefacts_a_for_single_b=1, artefact_match_parameters=[
        ('/model/CronAnnouncement/JobNumber', '/model/CronExecution/JobNumber')])
    a_class_selector = EventClassSelector('Announcement', [cron_job_announcement], None)
    b_class_selector = EventClassSelector('Execution', None, [cron_job_announcement])
    rules = [Rules.PathExistsMatchRule('/model/CronAnnouncement/Run', a_class_selector),
             Rules.PathExistsMatchRule('/model/CronExecution/Job', b_class_selector)]

    time_correlation_violation_detector = TimeCorrelationViolationDetector(analysis_context.aminer_config, rules, anomaly_event_handlers,
                                                                           output_log_line=True)
    analysis_context.register_component(time_correlation_violation_detector, component_name="TimeCorrelationViolationDetector")
    atom_filter.add_handler(time_correlation_violation_detector)
def build_analysis_pipeline(analysis_context):
    """
    Define the function to create pipeline for parsing the log data.
    It has also to define an AtomizerFactory to instruct aminer how to process incoming data streams to create log atoms from them.
    """
    date_format_string = b'%Y-%m-%d %H:%M:%S'
    cron = b' cron['

    # Build the parsing model:

    service_children_disk_report = [
        FixedDataModelElement(
            'Space',
            b' Current Disk Data is: Filesystem     Type  Size  Used Avail Use%'
        ),
        DelimitedDataModelElement('Data', b'%'),
        AnyByteDataModelElement('Rest')
    ]

    service_children_login_details = [
        FixedDataModelElement('User', b'User '),
        DelimitedDataModelElement('Username', b' '),
        FixedWordlistDataModelElement('Status',
                                      [b' logged in', b' logged out']),
        OptionalMatchModelElement(
            'PastTime',
            SequenceModelElement('Time', [
                FixedDataModelElement('Blank', b' '),
                DecimalIntegerValueModelElement('Minutes'),
                FixedDataModelElement('Ago', b' minutes ago.')
            ]))
    ]

    service_children_cron_job = [
        DateTimeModelElement('DTM', date_format_string),
        FixedDataModelElement('UNameSpace1', b' '),
        DelimitedDataModelElement('UName', b' '),
        FixedDataModelElement('UNameSpace2', b' '),
        DelimitedDataModelElement('User', b' '),
        FixedDataModelElement('Cron', cron),
        DecimalIntegerValueModelElement('JobNumber'),
        FixedDataModelElement('Details', b']: Job `cron.daily` started.')
    ]

    service_children_random_time = [
        FixedDataModelElement('Space', b'Random: '),
        DecimalIntegerValueModelElement('Random')
    ]

    service_children_sensors = [
        SequenceModelElement('CPUTemp', [
            FixedDataModelElement('FixedTemp', b'CPU Temp: '),
            DecimalIntegerValueModelElement('Temp'),
            FixedDataModelElement('Degrees', b'\xc2\xb0C')
        ]),
        FixedDataModelElement('Space1', b', '),
        SequenceModelElement('CPUWorkload', [
            FixedDataModelElement('Fixed Workload', b'CPU Workload: '),
            DecimalIntegerValueModelElement('Workload'),
            FixedDataModelElement('Percent', b'%')
        ]),
        FixedDataModelElement('Space2', b', '),
        DateTimeModelElement('DTM', date_format_string)
    ]

    service_children_user_ip_address = [
        FixedDataModelElement('User', b'User '),
        DelimitedDataModelElement('Username', b' '),
        FixedDataModelElement('Action', b' changed IP address to '),
        IpAddressDataModelElement('IP')
    ]

    service_children_cron_job_announcement = [
        DateTimeModelElement('DTM', date_format_string),
        FixedDataModelElement('Space', b' '),
        DelimitedDataModelElement('UName', b' '),
        FixedDataModelElement('Cron', cron),
        DecimalIntegerValueModelElement('JobNumber'),
        FixedDataModelElement('Run', b']: Will run job `'),
        FixedWordlistDataModelElement(
            'CronType',
            [b'cron.daily', b'cron.hourly', b'cron.monthly', b'cron.weekly']),
        FixedDataModelElement('Start Time', b'\' in 5 min.')
    ]

    service_children_cron_job_execution = [
        DateTimeModelElement('DTM', date_format_string),
        FixedDataModelElement('Space1', b' '),
        DelimitedDataModelElement('UName', b' '),
        FixedDataModelElement('Cron', cron),
        DecimalIntegerValueModelElement('JobNumber'),
        FixedDataModelElement('Job', b']: Job `'),
        FixedWordlistDataModelElement(
            'CronType',
            [b'cron.daily', b'cron.hourly', b'cron.monthly', b'cron.weekly']),
        FixedDataModelElement('Started', b'\' started')
    ]

    service_children_parsing_model_element = [
        DateTimeModelElement('DateTimeModelElement',
                             b'Current DateTime: %d.%m.%Y %H:%M:%S'),
        DecimalFloatValueModelElement('DecimalFloatValueModelElement',
                                      value_sign_type='optional'),
        DecimalIntegerValueModelElement('DecimalIntegerValueModelElement',
                                        value_sign_type='optional',
                                        value_pad_type='blank'),
        SequenceModelElement('', [
            DelimitedDataModelElement('DelimitedDataModelElement', b';'),
            FixedDataModelElement('FixedDataModelElement', b';')
        ])
    ]

    # ElementValueBranchModelElement
    fixed_data_me1 = FixedDataModelElement("fixed1", b'match ')
    fixed_data_me2 = FixedDataModelElement("fixed2", b'fixed String')
    fixed_wordlist_data_model_element = FixedWordlistDataModelElement(
        "wordlist", [b'data: ', b'string: '])
    decimal_integer_value_model_element = DecimalIntegerValueModelElement(
        "decimal")

    service_children_parsing_model_element.append(
        ElementValueBranchModelElement(
            'ElementValueBranchModelElement',
            FirstMatchModelElement("first", [
                SequenceModelElement(
                    "seq1",
                    [fixed_data_me1, fixed_wordlist_data_model_element]),
                SequenceModelElement("seq2", [
                    fixed_data_me1, fixed_wordlist_data_model_element,
                    fixed_data_me2
                ])
            ]), "wordlist", {
                0: decimal_integer_value_model_element,
                1: fixed_data_me2
            }))
    service_children_parsing_model_element.append(
        HexStringModelElement('HexStringModelElement'))
    service_children_parsing_model_element.append(
        SequenceModelElement('', [
            FixedDataModelElement('FixedDataModelElement',
                                  b'Gateway IP-Address: '),
            IpAddressDataModelElement('IpAddressDataModelElement')
        ]))
    service_children_parsing_model_element.append(
        MultiLocaleDateTimeModelElement('MultiLocaleDateTimeModelElement',
                                        [(b'%b %d %Y', "de_AT.utf8", None)]))
    service_children_parsing_model_element.append(
        RepeatedElementDataModelElement(
            'RepeatedElementDataModelElement',
            SequenceModelElement('SequenceModelElement', [
                FixedDataModelElement('FixedDataModelElement',
                                      b'drawn number: '),
                DecimalIntegerValueModelElement(
                    'DecimalIntegerValueModelElement')
            ]), 1))
    service_children_parsing_model_element.append(
        VariableByteDataModelElement('VariableByteDataModelElement', b'-@#'))
    service_children_parsing_model_element.append(
        SequenceModelElement('', [
            WhiteSpaceLimitedDataModelElement(
                'WhiteSpaceLimitedDataModelElement'),
            FixedDataModelElement('', b' ')
        ]))

    # The Base64StringModelElement must be just before the AnyByteDataModelElement to avoid unexpected Matches.
    service_children_parsing_model_element.append(
        Base64StringModelElement('Base64StringModelElement'))

    # The OptionalMatchModelElement must be paired with a FirstMatchModelElement because it accepts all data and thus no data gets
    # to the AnyByteDataModelElement. The AnyByteDataModelElement must be last, because all bytes are accepted.
    service_children_parsing_model_element.append(
        OptionalMatchModelElement(
            'OptionalMatchModelElement',
            FirstMatchModelElement('FirstMatchModelElement', [
                FixedDataModelElement('FixedDataModelElement',
                                      b'The-searched-element-was-found!'),
                AnyByteDataModelElement('AnyByteDataModelElement')
            ])))

    parsing_model = FirstMatchModelElement('model', [
        SequenceModelElement('CronAnnouncement',
                             service_children_cron_job_announcement),
        SequenceModelElement('CronExecution',
                             service_children_cron_job_execution),
        SequenceModelElement('DailyCron', service_children_cron_job),
        SequenceModelElement('DiskReport', service_children_disk_report),
        SequenceModelElement('LoginDetails', service_children_login_details),
        DecimalIntegerValueModelElement('Random'),
        SequenceModelElement('RandomTime', service_children_random_time),
        SequenceModelElement('Sensors', service_children_sensors),
        SequenceModelElement('IPAddresses', service_children_user_ip_address),
        FirstMatchModelElement('ParsingME',
                               service_children_parsing_model_element)
    ])

    # Some generic imports.
    from aminer.analysis import AtomFilters

    # Create all global handler lists here and append the real handlers
    # later on.
    # Use this filter to distribute all atoms to the analysis handlers.
    atom_filter = AtomFilters.SubhandlerFilter(None)

    from aminer.analysis.TimestampCorrectionFilters import SimpleMonotonicTimestampAdjust
    simple_monotonic_timestamp_adjust = SimpleMonotonicTimestampAdjust(
        [atom_filter])
    analysis_context.register_component(
        simple_monotonic_timestamp_adjust,
        component_name="SimpleMonotonicTimestampAdjust")

    from aminer.events.StreamPrinterEventHandler import StreamPrinterEventHandler
    stream_printer_event_handler = StreamPrinterEventHandler(analysis_context)
    from aminer.events.SyslogWriterEventHandler import SyslogWriterEventHandler
    syslog_event_handler = SyslogWriterEventHandler(analysis_context)
    from aminer.events.DefaultMailNotificationEventHandler import DefaultMailNotificationEventHandler
    if DefaultMailNotificationEventHandler.CONFIG_KEY_MAIL_TARGET_ADDRESS in analysis_context.aminer_config.config_properties:
        mail_notification_handler = DefaultMailNotificationEventHandler(
            analysis_context)
        analysis_context.register_component(mail_notification_handler,
                                            component_name="MailHandler")
    anomaly_event_handlers = [
        stream_printer_event_handler, syslog_event_handler,
        mail_notification_handler
    ]

    # Now define the AtomizerFactory using the model. A simple line based one is usually sufficient.
    from aminer.input.SimpleByteStreamLineAtomizerFactory import SimpleByteStreamLineAtomizerFactory
    analysis_context.atomizer_factory = SimpleByteStreamLineAtomizerFactory(
        parsing_model, [simple_monotonic_timestamp_adjust],
        anomaly_event_handlers)

    # Just report all unparsed atoms to the event handlers.
    from aminer.analysis.UnparsedAtomHandlers import SimpleUnparsedAtomHandler
    simple_unparsed_atom_handler = SimpleUnparsedAtomHandler(
        anomaly_event_handlers)
    atom_filter.add_handler(simple_unparsed_atom_handler,
                            stop_when_handled_flag=True)
    analysis_context.register_component(simple_unparsed_atom_handler,
                                        component_name="UnparsedHandler")

    from aminer.analysis.TimestampsUnsortedDetector import TimestampsUnsortedDetector
    timestamps_unsorted_detector = TimestampsUnsortedDetector(
        analysis_context.aminer_config, anomaly_event_handlers)
    atom_filter.add_handler(timestamps_unsorted_detector)
    analysis_context.register_component(
        timestamps_unsorted_detector,
        component_name="TimestampsUnsortedDetector")

    from aminer.analysis import Rules
    from aminer.analysis.AllowlistViolationDetector import AllowlistViolationDetector
    allowlist_rules = [
        Rules.OrMatchRule([
            Rules.AndMatchRule([
                Rules.PathExistsMatchRule(
                    '/model/LoginDetails/PastTime/Time/Minutes'),
                Rules.NegationMatchRule(
                    Rules.ValueMatchRule('/model/LoginDetails/Username',
                                         b'root'))
            ]),
            Rules.AndMatchRule([
                Rules.NegationMatchRule(
                    Rules.PathExistsMatchRule(
                        '/model/LoginDetails/PastTime/Time/Minutes')),
                Rules.PathExistsMatchRule('/model/LoginDetails')
            ]),
            Rules.NegationMatchRule(
                Rules.PathExistsMatchRule('/model/LoginDetails'))
        ])
    ]

    # This rule list should trigger, when the line does not look like: User root (logged in, logged out)
    # or User 'username' (logged in, logged out) x minutes ago.
    allowlist_violation_detector = AllowlistViolationDetector(
        analysis_context.aminer_config, allowlist_rules,
        anomaly_event_handlers)
    analysis_context.register_component(allowlist_violation_detector,
                                        component_name="Allowlist")
    atom_filter.add_handler(allowlist_violation_detector)

    from aminer.analysis.NewMatchPathDetector import NewMatchPathDetector
    new_match_path_detector = NewMatchPathDetector(
        analysis_context.aminer_config,
        anomaly_event_handlers,
        auto_include_flag=True)
    analysis_context.register_component(new_match_path_detector,
                                        component_name="NewMatchPath")
    atom_filter.add_handler(new_match_path_detector)

    def tuple_transformation_function(match_value_list):
        """Only allow output of the EnhancedNewMatchPathValueComboDetector after every 10000th element."""
        extra_data = enhanced_new_match_path_value_combo_detector.known_values_dict.get(
            tuple(match_value_list))
        if extra_data is not None:
            mod = 10000
            if (extra_data[2] + 1) % mod == 0:
                enhanced_new_match_path_value_combo_detector.auto_include_flag = False
            else:
                enhanced_new_match_path_value_combo_detector.auto_include_flag = True
        return match_value_list

    from aminer.analysis.EnhancedNewMatchPathValueComboDetector import EnhancedNewMatchPathValueComboDetector
    enhanced_new_match_path_value_combo_detector = EnhancedNewMatchPathValueComboDetector(
        analysis_context.aminer_config,
        ['/model/DailyCron/UName', '/model/DailyCron/JobNumber'],
        anomaly_event_handlers,
        auto_include_flag=True,
        tuple_transformation_function=tuple_transformation_function)
    analysis_context.register_component(
        enhanced_new_match_path_value_combo_detector,
        component_name="EnhancedNewValueCombo")
    atom_filter.add_handler(enhanced_new_match_path_value_combo_detector)

    from aminer.analysis.HistogramAnalysis import HistogramAnalysis, LinearNumericBinDefinition, ModuloTimeBinDefinition, \
        PathDependentHistogramAnalysis
    modulo_time_bin_definition = ModuloTimeBinDefinition(
        86400, 3600, 0, 1, 24, True)
    linear_numeric_bin_definition = LinearNumericBinDefinition(50, 5, 20, True)
    histogram_analysis = HistogramAnalysis(
        analysis_context.aminer_config,
        [('/model/RandomTime/Random', modulo_time_bin_definition),
         ('/model/Random', linear_numeric_bin_definition)], 10,
        anomaly_event_handlers)
    analysis_context.register_component(histogram_analysis,
                                        component_name="HistogramAnalysis")
    atom_filter.add_handler(histogram_analysis)

    path_dependent_histogram_analysis = PathDependentHistogramAnalysis(
        analysis_context.aminer_config, '/model/RandomTime',
        modulo_time_bin_definition, 10, anomaly_event_handlers)
    analysis_context.register_component(
        path_dependent_histogram_analysis,
        component_name="PathDependentHistogramAnalysis")
    atom_filter.add_handler(path_dependent_histogram_analysis)

    from aminer.analysis.MatchValueAverageChangeDetector import MatchValueAverageChangeDetector
    match_value_average_change_detector = MatchValueAverageChangeDetector(
        analysis_context.aminer_config, anomaly_event_handlers, None,
        ['/model/Random'], 100, 10)
    analysis_context.register_component(
        match_value_average_change_detector,
        component_name="MatchValueAverageChange")
    atom_filter.add_handler(match_value_average_change_detector)

    import sys
    from aminer.analysis.MatchValueStreamWriter import MatchValueStreamWriter
    match_value_stream_writer = MatchValueStreamWriter(sys.stdout, [
        '/model/Sensors/CPUTemp', '/model/Sensors/CPUWorkload',
        '/model/Sensors/DTM'
    ], b';', b'')
    analysis_context.register_component(
        match_value_stream_writer, component_name="MatchValueStreamWriter")
    atom_filter.add_handler(match_value_stream_writer)

    from aminer.analysis.NewMatchPathValueComboDetector import NewMatchPathValueComboDetector
    new_match_path_value_combo_detector = NewMatchPathValueComboDetector(
        analysis_context.aminer_config,
        ['/model/IPAddresses/Username', '/model/IPAddresses/IP'],
        anomaly_event_handlers,
        auto_include_flag=True)
    analysis_context.register_component(
        new_match_path_value_combo_detector,
        component_name="NewMatchPathValueCombo")
    atom_filter.add_handler(new_match_path_value_combo_detector)

    from aminer.analysis.NewMatchPathValueDetector import NewMatchPathValueDetector
    new_match_path_value_detector = NewMatchPathValueDetector(
        analysis_context.aminer_config,
        ['/model/DailyCron/JobNumber', '/model/IPAddresses/Username'],
        anomaly_event_handlers,
        auto_include_flag=True)
    analysis_context.register_component(new_match_path_value_detector,
                                        component_name="NewMatchPathValue")
    atom_filter.add_handler(new_match_path_value_detector)

    from aminer.analysis.MissingMatchPathValueDetector import MissingMatchPathValueDetector
    missing_match_path_value_detector = MissingMatchPathValueDetector(
        analysis_context.aminer_config, ['/model/DiskReport/Space'],
        anomaly_event_handlers,
        auto_include_flag=True,
        default_interval=2,
        realert_interval=5)
    analysis_context.register_component(missing_match_path_value_detector,
                                        component_name="MissingMatch")
    atom_filter.add_handler(missing_match_path_value_detector)

    from aminer.analysis.TimeCorrelationDetector import TimeCorrelationDetector
    time_correlation_detector = TimeCorrelationDetector(
        analysis_context.aminer_config,
        anomaly_event_handlers,
        2,
        min_rule_attributes=1,
        max_rule_attributes=5,
        record_count_before_event=70000,
        output_log_line=True)
    analysis_context.register_component(
        time_correlation_detector, component_name="TimeCorrelationDetector")
    atom_filter.add_handler(time_correlation_detector)

    from aminer.analysis.TimeCorrelationViolationDetector import TimeCorrelationViolationDetector, CorrelationRule, EventClassSelector
    cron_job_announcement = CorrelationRule(
        'CronJobAnnouncement',
        5,
        6,
        max_artefacts_a_for_single_b=1,
        artefact_match_parameters=[('/model/CronAnnouncement/JobNumber',
                                    '/model/CronExecution/JobNumber')])
    a_class_selector = EventClassSelector('Announcement',
                                          [cron_job_announcement], None)
    b_class_selector = EventClassSelector('Execution', None,
                                          [cron_job_announcement])
    rules = [
        Rules.PathExistsMatchRule('/model/CronAnnouncement/Run',
                                  a_class_selector),
        Rules.PathExistsMatchRule('/model/CronExecution/Job', b_class_selector)
    ]

    time_correlation_violation_detector = TimeCorrelationViolationDetector(
        analysis_context.aminer_config, rules, anomaly_event_handlers)
    analysis_context.register_component(
        time_correlation_violation_detector,
        component_name="TimeCorrelationViolationDetector")
    atom_filter.add_handler(time_correlation_violation_detector)
    def run_time_correlation_violation_detector(self, chance):
        results = [None] * self.iterations
        avg = 0
        z = 0
        while z < self.iterations:
            correlation_rule = CorrelationRule('Correlation',
                                               0,
                                               chance,
                                               max_artefacts_a_for_single_b=1,
                                               artefact_match_parameters=[
                                                   ('/integer/d0',
                                                    '/integer/d1')
                                               ])
            a_class_selector = EventClassSelector('Selector1',
                                                  [correlation_rule], None)
            b_class_selector = EventClassSelector('Selector2', None,
                                                  [correlation_rule])
            rules = [
                Rules.PathExistsMatchRule('/integer/d0', a_class_selector),
                Rules.PathExistsMatchRule('/integer/d1', b_class_selector)
            ]

            time_correlation_violation_detector = TimeCorrelationViolationDetector(
                self.analysis_context.aminer_config, rules,
                [self.stream_printer_event_handler])
            seconds = time.time()
            s = seconds
            i = 0
            decimal_integer_value_me = DecimalIntegerValueModelElement(
                'd0', DecimalIntegerValueModelElement.SIGN_TYPE_NONE,
                DecimalIntegerValueModelElement.PAD_TYPE_NONE)
            while int(time.time() - seconds) < self.waiting_time:
                integer = '/integer'
                p = process_time()
                r = random.randint(1, 100)
                seconds = seconds + process_time() - p
                decimal_integer_value_me1 = DecimalIntegerValueModelElement(
                    'd1', DecimalIntegerValueModelElement.SIGN_TYPE_NONE,
                    DecimalIntegerValueModelElement.PAD_TYPE_NONE)
                match_context = MatchContext(str(i).encode())
                match_element = decimal_integer_value_me.get_match_element(
                    integer, match_context)
                log_atom = LogAtom(match_element.match_string,
                                   ParserMatch(match_element), s,
                                   time_correlation_violation_detector)
                time_correlation_violation_detector.receive_atom(log_atom)

                match_context = MatchContext(str(i).encode())
                match_element = decimal_integer_value_me1.get_match_element(
                    integer, match_context)
                log_atom = LogAtom(match_element.match_string,
                                   ParserMatch(match_element), s + r / 100,
                                   time_correlation_violation_detector)
                time_correlation_violation_detector.receive_atom(log_atom)
                s = s + r / 100

                if r / 100 >= chance:
                    p = process_time()
                    match_context = MatchContext(str(i).encode())
                    match_element = decimal_integer_value_me.get_match_element(
                        integer, match_context)
                    log_atom = LogAtom(match_element.match_string,
                                       ParserMatch(match_element), s,
                                       time_correlation_violation_detector)
                    time_correlation_violation_detector.receive_atom(log_atom)
                    seconds = seconds + process_time() - p
                time_correlation_violation_detector.do_timer(s)
                i = i + 1
            results[z] = i
            z = z + 1
            avg = avg + i
        avg = avg / self.iterations
        type(self).result = self.result + self.result_string % (
            time_correlation_violation_detector.__class__.__name__, avg,
            results, '%d%% chance of not finding an element' %
            ((1 - chance) * 100))
예제 #8
0
def buildAnalysisPipeline(analysisContext):
    """Define the function to create pipeline for parsing the log
  data. It has also to define an AtomizerFactory to instruct AMiner
  how to process incoming data streams to create log atoms from
  them."""
    # Build the parsing model first:
    from aminer.parsing import FirstMatchModelElement
    from aminer.parsing import SequenceModelElement

    serviceChildren = []

    import CronParsingModel
    serviceChildren.append(CronParsingModel.getModel())

    import EximParsingModel
    serviceChildren.append(EximParsingModel.getModel())

    import RsyslogParsingModel
    serviceChildren.append(RsyslogParsingModel.getModel())

    import SyslogPreambleModel
    syslogPreambleModel = SyslogPreambleModel.getModel()

    parsingModel = SequenceModelElement('model', [
        syslogPreambleModel,
        FirstMatchModelElement('services', serviceChildren)
    ])

    # Some generic imports.
    from aminer.analysis import AtomFilters
    from aminer.analysis import Rules

    # Create all global handler lists here and append the real handlers
    # later on.
    # Use this filter to distribute all atoms to the analysis handlers.
    atomFilter = AtomFilters.SubhandlerFilter(None)
    anomalyEventHandlers = []

    # Now define the AtomizerFactory using the model. A simple line
    # based one is usually sufficient.
    from aminer.input import SimpleByteStreamLineAtomizerFactory
    analysisContext.atomizerFactory = SimpleByteStreamLineAtomizerFactory(
        parsingModel, [atomFilter],
        anomalyEventHandlers,
        defaultTimestampPath='/model/syslog/time')

    # Always report the unparsed lines: a part of the parsing model
    # seems to be missing or wrong.
    from aminer.input import SimpleUnparsedAtomHandler
    atomFilter.addHandler(SimpleUnparsedAtomHandler(anomalyEventHandlers),
                          stopWhenHandledFlag=True)

    # Report new parsing model path values. Those occurr when a line
    # with new structural properties was parsed.
    from aminer.analysis import NewMatchPathDetector
    newMatchPathDetector = NewMatchPathDetector(analysisContext.aminerConfig,
                                                anomalyEventHandlers,
                                                autoIncludeFlag=True)
    analysisContext.registerComponent(newMatchPathDetector,
                                      componentName='DefaultMatchPathDetector')
    atomFilter.addHandler(newMatchPathDetector)

    # Run a whitelisting over the parsed lines.
    from aminer.analysis import WhitelistViolationDetector
    violationAction = Rules.EventGenerationMatchAction(
        'Analysis.GenericViolation', 'Violation detected',
        anomalyEventHandlers)
    whitelistRules = []
    # Filter out things so bad, that we do not want to accept the
    # risk, that a too broad whitelisting rule will accept the data
    # later on.
    whitelistRules.append(
        Rules.ValueMatchRule('/model/services/cron/msgtype/exec/user',
                             'hacker', violationAction))
    # Ignore Exim queue run start/stop messages
    whitelistRules.append(
        Rules.PathExistsMatchRule('/model/services/exim/msg/queue/pid'))
    # Ignore all ntpd messages for now.
    whitelistRules.append(Rules.PathExistsMatchRule('/model/services/ntpd'))
    # Add a debugging rule in the middle to see everything not whitelisted
    # up to this point.
    whitelistRules.append(Rules.DebugMatchRule(False))
    # Ignore hourly cronjobs, but only when started at expected time
    # and duration is not too long.
    whitelistRules.append(
        Rules.AndMatchRule([
            Rules.ValueMatchRule(
                '/model/services/cron/msgtype/exec/command',
                '(   cd / && run-parts --report /etc/cron.hourly)'),
            Rules.ModuloTimeMatchRule('/model/syslog/time', 3600, 17 * 60,
                                      17 * 60 + 5)
        ]))

    atomFilter.addHandler(
        WhitelistViolationDetector(whitelistRules, anomalyEventHandlers))

    # Include the e-mail notification handler only if the configuration
    # parameter was set.
    from aminer.events import DefaultMailNotificationEventHandler
    if DefaultMailNotificationEventHandler.CONFIG_KEY_MAIL_TARGET_ADDRESS in analysisContext.aminerConfig.configProperties:
        mailNotificationHandler = DefaultMailNotificationEventHandler(
            analysisContext.aminerConfig)
        analysisContext.registerComponent(mailNotificationHandler,
                                          componentName=None)
        anomalyEventHandlers.append(mailNotificationHandler)


# Add stdout stream printing for debugging, tuning.
    from aminer.events import StreamPrinterEventHandler
    anomalyEventHandlers.append(
        StreamPrinterEventHandler(analysisContext.aminerConfig))