def load_data_to_buffer(self, data_file_range): if not self._load_pre_processd_data: tmp_x, self._y_buffer = get_data_from_files( data_file_range=data_file_range, model_type=self._params['model_type']) #if input is an image, then we need to convert the string to float if self._params['model_type'] == 'cnn' or self._params[ 'model_type'] == 'siam': self._x_buffer = [] for x_image in tmp_x: if self._params['model_type'] == 'siam': self._x_buffer.append( (np.transpose(string2image(x_image[0][0]), axes=[2, 1, 0]).flatten(), np.transpose(string2image(x_image[1][0]), axes=[2, 1, 0]).flatten())) else: self._x_buffer.append( np.transpose(string2image(x_image[0]), axes=[2, 1, 0]).flatten()) else: self._x_buffer = tmp_x else: self._x_buffer, self._y_buffer = self._get_pre_processd_data.load_data( ) assert (len(self._x_buffer) == len(self._y_buffer)) self._buffer_size = len(self._x_buffer)
def get_data(operation, string_img_convert=True): raise Exception("Fix this damn thing") if operation == 'test': data_file_indices = network_params_siam['test_file_indices'] elif operation =='train': data_file_indices = network_params_siam['train_file_indices'] tmp_x, data_y = get_data_from_files(data_file_range=data_file_indices, model_type='siam') data_x = [] if string_img_convert: for x_image in tmp_x: data_x.append((np.transpose(string2image(x_image[0][0]), axes=[2,1,0]).flatten(), np.transpose(string2image(x_image[1][0]), axes=[2,1,0]).flatten())) else: data_x = tmp_x return np.asarray(data_x), np.asarray(data_y)
def get_data(data_file_indices, model_type): tmp_x, y_buffer = get_data_from_files(data_file_range=data_file_indices, model_type=model_type) #if input is an image, then we need to convert the string to float if model_type == 'cnn' or model_type == 'siam': x_buffer = [] for x_image in tmp_x: if model_type == 'siam': x_buffer.append((np.transpose(string2image(x_image[0][0]), axes=[2, 1, 0]).flatten(), np.transpose(string2image(x_image[1][0]), axes=[2, 1, 0]).flatten())) else: x_buffer.append( np.transpose(string2image(x_image[0]), axes=[2, 1, 0]).flatten()) else: x_buffer = tmp_x assert (len(x_buffer) == len(y_buffer)) return x_buffer, y_buffer
def get_data(operation, string_img_convert=True): if operation == 'test': data_file_indices = network_params_cmbnd['test_file_indices'] elif operation == 'train': data_file_indices = network_params_cmbnd['train_file_indices'] tmp_x, data_y = get_data_from_files(data_file_range=data_file_indices, model_type='cnn') data_x = [] if string_img_convert: for x_image in tmp_x: data_x.append(string2image(x_image[0]).flatten()) else: data_x = tmp_x return np.asarray(data_x), np.asarray(data_y)