예제 #1
0
def upload_signals_to_amphora(irradiation_amphora_id, signals):

    #upload data to amphora data website
    configuration = Configuration()
    auth_api = amphora_client.AuthenticationApi(
        amphora_client.ApiClient(configuration))
    token_request = amphora_client.TokenRequest(username=os.getenv('username'),
                                                password=os.getenv('password'))

    try:
        # Gets a token
        res = auth_api.authentication_request_token(
            token_request=token_request)
        configuration.api_key["Authorization"] = "Bearer " + res
        # create an instance of the Users API, now with Bearer token
        users_api = amphora_client.UsersApi(
            amphora_client.ApiClient(configuration))
        me = users_api.users_read_self()
        print(me)
    except ApiException as e:
        print("Exception when calling AuthenticationAPI: %s\n" % e)

    amphora_api = amphora_client.AmphoraeApi(
        amphora_client.ApiClient(configuration))

    try:
        print(signals)
        amphora_api.amphorae_signals_upload_signal_batch(
            irradiation_amphora_id, request_body=signals)

    except ApiException as e:
        print("Exception when calling AmphoraeApi: %s\n" % e)
def establish_connection():
    '''
    create token and return it

    status: working with v0.3.0!
    '''
    configuration = Configuration()
    configuration.host = 'https://beta.amphoradata.com'
    # create instance of API class, creates an unauthenticated client
    auth_api = amphora_client.AuthenticationApi(
        amphora_client.ApiClient(configuration))
    # if function throws ValueError 'username'/'password' must not be none, then the environment
    # variables are not set, c.f. setup-EForecast.sh and readme.MD section Quickstart
    token = auth_api.authentication_request_token(
        token_request=amphora_client.TokenRequest(username=useful['username'],
                                                  password=useful['password']))

    return token
예제 #3
0
def create_or_update_amphorae(amphora_map, location_info):
    # LOAD
    configuration = Configuration()

    # Create an instance of the Authentication class
    auth_api = amphora_client.AuthenticationApi(
        amphora_client.ApiClient(configuration))
    token_request = amphora_client.TokenRequest(username=os.getenv('username'),
                                                password=os.getenv('password'))

    new_map = dict()
    try:
        print("Logging in")
        token = auth_api.authentication_request_token(
            token_request=token_request)
        configuration.api_key["Authorization"] = "Bearer " + str(token)
        print("Logged in")
        client = amphora_client.ApiClient(configuration)
        amphora_api = amphora_client.AmphoraeApi(client)
        #keys are postcodes
        for key in amphora_map:
            id = amphora_map[key]
            if (id == None):
                # we have to create an Amphora
                ghiloc = location_info[key]
                locname = ghiloc['name']
                print(f'Creating new Amphora for location {locname}')
                # create the details of the Amphora
                name = 'Solar Irradiance GHI: ' + ghiloc[
                    'name'] + ' (' + ghiloc['state'] + ')'
                desc = 'Calculated data, from ' + ghiloc['name'] + \
                    '. PostCode: ' + str(key) + '\r\n' + \
                    'Properties include: \r\n- temperature (degrees C)\r\n' + \
                    '- Solar Zenith Angle\r\n- Global Horizontal Irradiance (W/m^2)\r\n' + \
                    '- Cloud Cover (%)\r\nTemperature and cloud cover signals supplied by Weatherzone'
                labels = 'Weather,forecast,solar,timeseries'
                ts_cs_id = 'Weatherzone_Forecast'

                dto = amphora_client.CreateAmphora(
                    name=name,
                    description=desc,
                    price=0,
                    lat=ghiloc['lat'],
                    lon=ghiloc['long'],
                    labels=labels,
                    terms_and_conditions_id=ts_cs_id)

                res = amphora_api.amphorae_create(create_amphora=dto)
                # now create the signals
                print("Creating Signals")
                for s in signals():
                    amphora_api.amphorae_signals_create_signal(res.id,
                                                               signal=s)

                new_map[key] = res.id
            else:
                a = amphora_api.amphorae_read(id)
                print(f'Using existing amphora: {a.name}')
                new_map[key] = id
                existing_signals = amphora_api.amphorae_signals_get_signals(id)
                if (len(existing_signals) > 0):
                    print('Signals exist already')
                else:
                    print('Adding signals')
                    for s in signals():
                        amphora_api.amphorae_signals_create_signal(id,
                                                                   signal=s)

    except ApiException as e:
        print("Error Create or update amphorae: %s\n" % e)
        raise e

    return new_map
예제 #4
0
from dotenv import load_dotenv
load_dotenv()
import amphora_client
from amphora_client.rest import ApiException
from amphora_client.configuration import Configuration
import os
from src.MLA import *

EYCI_id = "1bd74490-ccf6-43d1-99f1-ef53f60c293c"
ESTLI_id = "35f32a02-5abf-417b-a8ec-40dc7ac3ff7d"

EYCI_dict, ESTLI_dict = get_EYCI_ESTLI_data()

#upload data to amphora data website
configuration = Configuration()
auth_api = amphora_client.AuthenticationApi(
    amphora_client.ApiClient(configuration))
token_request = amphora_client.TokenRequest(username=os.getenv('username'),
                                            password=os.getenv('password'))

try:
    # Gets a token
    res = auth_api.authentication_request_token(token_request=token_request)
    configuration.api_key["Authorization"] = "Bearer " + res
    # create an instance of the Users API, now with Bearer token
    users_api = amphora_client.UsersApi(
        amphora_client.ApiClient(configuration))
    me = users_api.users_read_self()
except ApiException as e:
    print("Exception when calling AuthenticationAPI: %s\n" % e)
예제 #5
0
# Import Amphora librarys
import amphora_client as a10a
from amphora_client.configuration import Configuration
from amphora_extensions.file_uploader import FileUploader

# Import non-Amphora librarys
from array import array
import os
import numpy as np
import time
from datetime import datetime, timedelta

# Login to amphoradata.com
configuration = Configuration()
configuration.host = "https://app.amphoradata.com"
auth_api = a10a.AuthenticationApi(a10a.ApiClient(configuration))
token_request = a10a.TokenRequest(username=os.getenv('username'),
                                  password=os.getenv('password'))
res = auth_api.authentication_request_token(token_request=token_request)
configuration.api_key["Authorization"] = "Bearer " + res
amphora_api = a10a.AmphoraeApi(a10a.ApiClient(configuration))


# Define model function
def time_product(date_time):
    time_hour = date_time.hour
    time_minute = date_time.minute
    time_second = date_time.second

    time_prod = time_hour * time_minute * time_second
예제 #6
0
def get_temps_cloud(id, start_date, end_date, required_data):
    configuration = Configuration()
    configuration.host = "https://beta.amphoradata.com"
    # Create an instance of the auth API class
    auth_api = a10a.AuthenticationApi(a10a.ApiClient(configuration))
    token_request = a10a.TokenRequest(username=os.getenv('username'),
                                      password=os.getenv('password'))

    try:
        # Gets a token
        t1_start = time.perf_counter()
        res = auth_api.authentication_request_token(
            token_request=token_request)
        t1_stop = time.perf_counter()
        print("Elapsed time:",
              t1_stop - t1_start)  # print performance indicator
        configuration.api_key["Authorization"] = "Bearer " + res

        amphora_api = a10a.AmphoraeApi(a10a.ApiClient(configuration))
        print(f'Getting signals for: {amphora_api.amphorae_read(id).name}')
        signals = amphora_api.amphorae_signals_get_signals(id)
        properties = list((s._property for s in signals))
        print(properties)

        ts_api = a10a.TimeSeriesApi(a10a.ApiClient(
            configuration))  # the API for interacting with time series
        # Create a DateTimeRange to describe over what period we want data.
        time_range = a10a.DateTimeRange(_from=start_date, to=end_date)

        # Create a variable object for getting temperature data
        temperatureVariable = a10a.NumericVariable(
            kind="numeric",
            value=a10a.Tsx(tsx="$event.temperature"),
            aggregation=a10a.Tsx("avg($value)"))
        get_series = a10a.GetSeries(
            [id],
            search_span=time_range,
            inline_variables={"temperature": temperatureVariable})
        time_series_data = ts_api.time_series_query_time_series(
            a10a.QueryRequest(get_series=get_series))
        print(
            f'Got {len(time_series_data.timestamps)} datapoints and {len(time_series_data.properties)} properties'
        )
        # access the data in time_series_data.properties
        print("-----------")
        temp_values = next(value for value in time_series_data.properties
                           if value.name == 'temperature')

        # Create a variable object for getting cloudCover data
        cloudCoverVariable = a10a.NumericVariable(
            kind="numeric",
            value=a10a.Tsx(tsx="$event.cloudCover"),
            aggregation=a10a.Tsx("avg($value)"))
        get_series = a10a.GetSeries(
            [id],
            search_span=time_range,
            inline_variables={"cloudCover": cloudCoverVariable})
        time_series_data = ts_api.time_series_query_time_series(
            a10a.QueryRequest(get_series=get_series))
        print(
            f'Got {len(time_series_data.timestamps)} datapoints and {len(time_series_data.properties)} properties'
        )
        # access the data in time_series_data.properties
        print("-----------")
        cloudCover_values = next(value for value in time_series_data.properties
                                 if value.name == 'cloudCover')

        wtVar = a10a.NumericVariable(kind="numeric",
                                     value=a10a.Tsx(tsx="$event.wt"),
                                     aggregation=a10a.Tsx("avg($value)"))

        get_series = a10a.GetSeries([id],
                                    search_span=time_range,
                                    inline_variables={"wt": wtVar})
        time_series_data = ts_api.time_series_query_time_series(
            a10a.QueryRequest(get_series=get_series))

        wt_values = next(value for value in time_series_data.properties
                         if value.name == 'wt')

        #create dictionary of signals, with timestamp: [temp, cloud_cover] for each entry if both required
        temp_cloud_dict = {}
        wt_dict = {}

        for i in range(len(temp_values.values)):
            #update the dictionary with the value for the most recent write_time
            #and override wt_dict entries if so
            if time_series_data.timestamps[i] not in temp_cloud_dict.keys() or \
            wt_values.values[i] > wt_dict[time_series_data.timestamps[i]]:
                if required_data == 'both':
                    temp_cloud_dict[time_series_data.timestamps[i]] = [
                        temp_values.values[i], cloudCover_values.values[i]
                    ]
                elif required_data == 'cloud_cover':
                    temp_cloud_dict[time_series_data.timestamps[
                        i]] = cloudCover_values.values[i]
                elif required_data == 'temperature':
                    temp_cloud_dict[
                        time_series_data.timestamps[i]] = temp_values.values[i]
                else:
                    raise ValueError(
                        "required_data must be 'both', 'temperature' or 'cloud_cover'"
                    )
                wt_dict[time_series_data.timestamps[i]] = wt_values.values[i]

    except ApiException as e:
        print("Exception when calling API: %s\n" % e)

    return temp_cloud_dict
def fetch_data(params):
    '''
    Fetches dataset in amphora ids, returns a pd.DataFrame of the API response
    
    params: parameter dict containing keys
      id          e.g. ecc5263e-83b6-42d6-8852-64beffdf204e
      token       as created by establish_connection()
      start_time  datetime object
      end_time    datetime object
      filter      optional parameter to filter results by
    returns
    pd.DataFrame

    '''
    id = params['id']
    start_time = params['start_time']
    end_time = params['end_time']
    if 'filter' in params.keys():
        filter_ = params['filter']
    else:
        filter_ = False

    # example ids to test run this function with:
    # ids= {'electricity_NSW': 'ecc5263e-83b6-42d6-8852-64beffdf204e',
    #       'weather_QLD': 'a46f461f-f7ee-4cc5-a1e4-569960ea5ed8',
    #       'electricity_SA': '89c2e30d-78c8-46ef-b591-140edd84ddb6',
    #       'electricity_QLD': 'ef22fa0f-010c-4ab1-8a28-a8963f838ce9',
    #       'electricity_VIC': '3b66da5a-0723-4778-98fc-02d619c70664',
    #       'weather_NSW': '11fd3d6a-12e4-4767-9d52-03271b543c66',
    #       'weather_VIC': 'd48ac35f-c658-41c1-909a-f662d6f3a972',
    #       'weather_SA': 'f860ba45-9dda-41e0-91aa-73901a323318'}

    configuration = Configuration()
    configuration.host = "https://beta.amphoradata.com"
    configuration.api_key["Authorization"] = "Bearer " + establish_connection()

    # To see amphora belonging to the id on the web:
    # print("https://beta.amphoradata.com/Amphorae/Detail?id={}".format(id))

    try:
        amphora_api = amphora_client.AmphoraeApi(
            amphora_client.ApiClient(configuration))
        #print(f'Getting signals for: {amphora_api.amphorae_read(id).name}')
        signals = amphora_api.amphorae_get_signals(id)
        # grab all the different timeseries names using a listcomprehension
        properties = [s._property for s in signals]

        # the API for interacting with time series
        ts_api = amphora_client.TimeSeriesApi(
            amphora_client.ApiClient(configuration))

        time_range = amphora_client.DateTimeRange(_from=start_time,
                                                  to=end_time)

        # get tomorrow's temperatures

        property_ = []
        value_dict = {}
        if filter_:
            for _ in properties:
                property_ = '$event.' + _
                variable1 = amphora_client.NumericVariable(
                    kind="numeric",
                    value=amphora_client.Tsx(tsx=property_),
                    filter=amphora_client.Tsx(
                        "$event.periodType.String = '{}'".format(filter_)),
                    aggregation=amphora_client.Tsx("avg($value)"))
                value_dict[_] = variable1
        else:
            for _ in properties:
                property_ = '$event.' + _
                variable1 = amphora_client.NumericVariable(
                    kind="numeric",
                    value=amphora_client.Tsx(tsx=property_),
                    aggregation=amphora_client.Tsx("avg($value)"))
                value_dict[_] = variable1

        # if some of the data needs to be filtered, e.g., ecc5263e-83b6-42d6-8852-64beffdf204e
        # has 'Forecast' and 'Actual' values for spot prices, also get the second one if
        # the parameter is passed

        # if you dont understand wtf is going on:
        # https://docs.microsoft.com/en-au/rest/api/time-series-insights/dataaccess(preview)/query/execute#getseries

        # get the series (plural, if so defined above in value_dict!), save to time_series_data
        get_series = amphora_client.GetSeries([id],
                                              search_span=time_range,
                                              inline_variables=value_dict)
        time_series_data = ts_api.time_series_query_time_series(
            amphora_client.QueryRequest(get_series=get_series))

        # ingest data into pd.DataFrame
        # create list of returned timeseries
        apple = []
        for _ in range(len(time_series_data.properties)):
            apple.append(
                np.array(time_series_data.properties[_].values).reshape(
                    (len(time_series_data.properties[_].values))))

        # dataframe containing all data for further stuff
        banana = pd.DataFrame(apple).T
        banana.index = np.array(time_series_data.timestamps)
        # delete weird artefact
        del banana[0]
        if filter_:
            properties_filtered = [p + '.' + filter_ for p in properties]
            banana.columns = properties_filtered
        else:
            banana.columns = properties
        return banana

    except ApiException as e:
        print("Exception when calling API: %s\n" % e)
def upload_series(df, params1, id_=''):
    '''
    Fetches dataset in amphora ids, returns a pd.DataFrame of the API response
    
    df:       pandas DataFrame
    id_:   (str) if amphora exists pass id, else pass empty string
    params:   parameter dict containing keys
      name        (str) name of amphora e.g. 'Price Predictions Avocado Futures'
      description (str) description of amphora e.g. 'Spot Price Predictions for Futures of 
                  Australian grown Hass Avocadoes.'
      price       (int) price of Amphora, can be >=0
      file_path   (str) path to files, or filename of file to be uploaded.
    

    returns:
      failure/success message
    '''
    name = params1['name']
    description = params1['description']
    price = params1['price']
    # file_path = params1['file_path']

    configuration = Configuration()
    configuration.host = "https://beta.amphoradata.com"
    configuration.api_key["Authorization"] = "Bearer " + establish_connection()

    try:
        # get API token and create authorized client:
        configuration.api_key[
            "Authorization"] = "Bearer " + establish_connection()
        amphora_api = amphora_client.AmphoraeApi(
            amphora_client.ApiClient(configuration))

        # create amphora description (dto), then create amphora (amphora)
        if not id_:
            dto = amphora_client.CreateAmphoraDto(name=name,
                                                  price=price,
                                                  description=description)
            amphora = amphora_api.amphorae_create(create_amphora_dto=dto)
            signals_liste = []
            for col in df.columns:
                signals_liste.append(
                    SignalDto(_property=col, value_type='Numeric'))
            for _ in signals_liste:
                amphora_api.amphorae_create_signal(amphora.id, signal_dto=_)
        else:
            amphora = amphora_api.amphorae_read(id_)
            signal = _contained_signals(amphora_api, id_)[0]

            # test that all signals are exist both in the amphora and the df:
            cols = [n for n in df.columns]
            assert all(
                elem in signal for elem in cols
            ), f'Content, i.e. signals, in Amphora do not match with DataFrame columns. Amphora contains: {signal}, df contains {cols}'

        # transform pd.DataFrame into API compatible format of a list of dicts (1 dict per df row)
        signal_list = []
        cats = [x for x in df.columns]
        for row in range(df.shape[0]):
            temp_dict = dict(t=df.index[row])
            for _ in range(len(cats)):
                temp_dict[cats[_]] = float(df.iloc[row, _])
            signal_list.append(temp_dict)
        # upload of signals
        amphora_api.amphorae_upload_signal_batch(amphora.id,
                                                 request_body=signal_list)
        print(
            f'Uploaded {len(signal_list)} signals to amphora "{amphora.name}" under "{amphora.id}"'
        )

        # if one where to upload a file:
        # uploader = FileUploader(amphora_api)
        #
        # the way it is set ip, file_path can either be an entire directory
        # corresponding to head in (head, tail = ntpath.split(path)),
        # or to tail, the filename, if there is a valid filename!
        # uploader.create_and_upload_file(amphora.id, file_path)

    except ApiException as e:
        print("Exception when calling API: %s\n" % e)