예제 #1
0
    def solve(self):
        q = gen_symbols(BinaryPoly, *self.board.get_size(), len(self.pieces),
                        8)

        # 制約(a) 重複する置き方のピースは除外する
        for y in range(self.board.get_size()[0]):
            for x in range(self.board.get_size()[1]):
                for i in range(len(self.pieces)):
                    for j in range(self.pieces[i].placement_count, 8):
                        q[y][x][i][j] = BinaryPoly(0)

        # 制約(b) ピースはボードから外に出ない
        for y in range(self.board.get_size()[0]):
            for x in range(self.board.get_size()[1]):
                for i in range(len(self.pieces)):
                    for j in range(self.pieces[i].placement_count):
                        if len(self.pieces[i].get_blocks(j, (x, y)) -
                               self.board.get_blocks()) > 0:
                            q[y][x][i][j] = BinaryPoly(0)

        # 制約(c) ピース同士は重ならずボードを全て埋める
        s = dict()
        for b in self.board.get_blocks():
            s[b] = BinaryPoly()
        for y in range(self.board.get_size()[0]):
            for x in range(self.board.get_size()[1]):
                for i in range(len(self.pieces)):
                    for j in range(self.pieces[i].placement_count):
                        for p in self.pieces[i].get_blocks(
                                j, (x, y)) & self.board.get_blocks():
                            s[p] += q[y][x][i][j]
        board_constraints = [equal_to(q, 1) for q in s.values()]

        # 制約(d) 全てのピースは一度ずつ使われる
        piece_constraints = [
            equal_to(
                sum(q[y][x][i][j] for y in range(self.board.get_size()[0])
                    for x in range(self.board.get_size()[1])
                    for j in range(8)), 1) for i in range(len(self.pieces))
        ]

        constraints = (sum(board_constraints) + sum(piece_constraints))

        solver = Solver(self.client)

        model = BinaryQuadraticModel(constraints)
        result = solver.solve(model)
        if len(result) == 0:
            raise RuntimeError("Any one of constaraints is not satisfied.")

        solution = result[0]
        values = solution.values
        q_values = decode_solution(q, values)
        Visualizer().visualize(self.pieces, self.board, q_values)
예제 #2
0
def by_amplify_limited(list_dependent_variables, num_registers, limitation):
    num_variables = len(list_dependent_variables)
    q = gen_symbols(BinaryPoly, num_variables, num_registers)

    # 各変数を1つのレジスタに割り当てるOne-het制約
    const_onehot = [
        equal_to(sum_poly([q[i][r] for r in range(num_registers)]), 1)
        for i in range(num_variables)
    ]

    # レジスタスピルを減らすために,依存関係のある変数同士が同一のレジスタに割り当てられない制約
    const_spill = [
        penalty(q[i][r] * q[j][r]) for i in range(num_variables)
        for j in list_dependent_variables[i] if i < j
        for r in range(num_registers)
    ]

    # ある変数が割り当てられるレジスタがわかっている時,必ずそのレジスタに割り当てられるようにする制約
    const_limit = [
        penalty(q[i][r]) for i, x in limitation.items()
        for r in range(num_registers) if r not in x
    ]

    constraints = sum(const_onehot)
    if len(const_spill) != 0:
        constraints += sum(const_spill)
    if len(const_limit) != 0:
        constraints += sum(const_limit)
    return {"qubits": q, "model": BinaryQuadraticModel(constraints)}
예제 #3
0
def make_hamiltonian(d, feed_dict):
    # set the number of cities
    N = len(d)
    # set hyperparameters
    lambda_1 = feed_dict['h1']
    lambda_2 = feed_dict['h2']
    # make variables
    x = gen_symbols(BinaryPoly, N, N)
    # set One-hot constraint for time
    h1 = [equal_to(sum_poly([x[n][i] for n in range(N)]), 1) for i in range(N)]
    # set One-hot constraint for city
    h2 = [equal_to(sum_poly([x[n][i] for i in range(N)]), 1) for n in range(N)]
    # compute the total of constraints
    const = lambda_1 * sum(h1) + lambda_2 * sum(h2)
    # set objective function
    obj = sum_poly(N, lambda n: sum_poly(N, lambda i: sum_poly(N, lambda j: d[i][j]*x[n][i]*x[(n+1)%N][j]), ), )
    # compute model
    model = obj + const
    return x, model
예제 #4
0
def by_amplify(list_dependent_variables, num_registers):
    num_variables = len(list_dependent_variables)
    q = gen_symbols(BinaryPoly, num_variables, num_registers)

    # 各変数を1つのレジスタに割り当てるOne-het制約
    const_onehot = [
        equal_to(sum_poly([q[i][r] for r in range(num_registers)]), 1)
        for i in range(num_variables)
    ]

    # レジスタスピルを減らすために,依存関係のある変数同士が同一のレジスタに割り当てられない制約
    const_spill = [
        penalty(q[i][r] * q[j][r]) for i in range(num_variables)
        for j in list_dependent_variables[i] if i < j
        for r in range(num_registers)
    ]

    constraints = sum(const_onehot) + sum(const_spill)
    return {"qubits": q, "model": BinaryQuadraticModel(constraints)}
예제 #5
0
def make_hamiltonian(type_matrix, weak_matrix, resist_matrix, enemies, num_party, feed_dict):
    # set the number of types
    N = len(type_matrix)
    # set the number of enemies
    M = len(enemies)
    # set hyperparameters
    lambda_1 = feed_dict['h1']
    lambda_2 = feed_dict['h2']
    lambda_3 = feed_dict['h3']
    # make variables
    x = gen_symbols(BinaryPoly, num_party, N)
    # set one-hot constraint for types
    h1 = [equal_to(sum_poly([x[i][j] for j in range(N)]), 1) for i in range(num_party)]
    # set weak constraint
    h2 = [less_equal(sum_poly(N, lambda j: sum_poly(num_party, lambda l: sum_poly(N, lambda k: enemies[i][j]*weak_matrix[j][k]*x[l][k]))), 2) for i in range(M)]
    # set resist constraint
    h3 = [greater_equal(sum_poly(N, lambda j: sum_poly(num_party, lambda l: sum_poly(N, lambda k: enemies[i][j]*resist_matrix[j][k]*x[l][k]))), 1) for i in range(M)]
    # compute the total of constraints
    const = lambda_1 * sum(h1) + lambda_2 * sum(h2) + lambda_3 * sum(h3)
    # set objective function
    obj = sum_poly(num_party, lambda i: sum_poly(N, lambda j: sum_poly(N, lambda k: sum_poly(M, lambda l: x[i][j]*type_matrix[j][k]*enemies[l][k]))))
    # compute model
    model = - obj + const
    return x, model
예제 #6
0
solver = Solver(client)

# 四色の定義
colors = ["red", "green", "blue", "yellow"]
num_colors = len(colors)
num_region = len(jm.pref_names) - 1  # 都道府県数を取得

# 都道府県数 x 色数 の変数を作成
q = gen_symbols(BinaryPoly, num_region, num_colors)

# 各領域に対する制約
# 一つの領域に一色のみ(one-hot)
# sum_{c=0}^{C-1} q_{i,c} = 1 for all i
reg_constraints = [
    equal_to(sum_poly([q[i][c] for c in range(num_colors)]), 1)
    for i in range(num_region)
]

# 隣接する領域間の制約
adj_constraints = [
    # 都道府県コードと配列インデックスは1ずれてるので注意
    penalty(q[i][c] * q[j - 1][c]) for i in range(num_region)
    for j in jm.adjacent(i + 1)  # j: 隣接している都道府県コード
    if i + 1 < j for c in range(num_colors)
]

constraints = sum(reg_constraints) + sum(adj_constraints)

model = BinaryQuadraticModel(constraints)
result = solver.solve(model)
예제 #7
0
def quantum_solver_approx(N, M,
                          query):  # solve with Amplify (approximate version)
    q = gen_symbols(BinaryPoly, M, N, N)  # represent the solution

    ##########   constraints   ##########

    # each layer doesn't have 2+ same values
    one_hot_constraints_layer = [
        # m -> layer
        # n -> qubit
        # v -> value of qubit
        equal_to(sum(q[m][n][v] for n in range(N)), 1) for m in range(M)
        for v in range(N)
    ]

    # each qubit doesn't have 2+ values
    one_hot_constraints_num = [
        # m -> layer
        # n -> qubit
        # v -> value of qubit
        equal_to(sum(q[m][n][v] for v in range(N)), 1) for m in range(M)
        for n in range(N)
    ]

    # every CX gate must be applied for 2 adjacent qubits
    CXgate_constraints = []
    for m in range(M):
        for g0 in range(0, len(query[m]), 2):
            v0, v1 = query[m][g0], query[m][g0 + 1]

            # v0 and v1 must be adjacent each other
            for i in range(N):
                for j in range(i + 2, N):
                    CXgate_constraints.append(
                        penalty(q[m][i][v0] * q[m][j][v1]))
                    CXgate_constraints.append(
                        penalty(q[m][i][v1] * q[m][j][v0]))

    constraints = (sum(one_hot_constraints_layer) +
                   sum(one_hot_constraints_num) + sum(CXgate_constraints))

    cost = sum_poly(
        M - 1, lambda m: sum_poly(
            N, lambda i: sum_poly(
                N, lambda j: sum_poly(N, lambda v: q[m][i][v] * q[m + 1][j][v])
                * ((N - 1) * (i + j) - 2 * i * j) / N)))

    ##########   solve   ##########

    solver = Solver(client)
    model = BinaryQuadraticModel(constraints * constraintWeight + cost)

    result = solver.solve(model)
    if len(result) == 0:
        raise RuntimeError("Any one of constraints is not satisfied.")

    values = result[0].values
    q_values = decode_solution(q, values, 1)

    # print(q_values_main)

    ##########   decode the result into string   ##########

    ans = [[-1 for n in range(N)] for m in range(M)]
    for m in range(M):
        for n in range(N):
            for v in range(N):
                if (q_values[m][n][v] > 0.5):
                    ans[m][n] = v

    cost = 0
    for m in range(M - 1):
        cost += calcCost(ans[m], ans[m + 1])

    return cost, ans
예제 #8
0
def quantum_solver_strict(N, M, query):  # solve by Amplify (strict version)
    q_all = gen_symbols(BinaryPoly,
                        M * N * N + (M - 1) * N * N * N + (M - 1) * N * N)

    q = q_all[:M * N * N]  # represent the solution
    q_sub = q_all[M * N * N:M * N * N + (M - 1) * N * N *
                  N]  # q_sub[m][i][j][v] = q[m][i][v] * q[m+1][j][v]
    q_C_matrix = q_all[
        M * N * N + (M - 1) * N * N *
        N:]  # q_C_matrix[m][i][j] = sum(q_sub[m][i][j][v] for v)

    ##########   constraints   ##########

    # each layer doesn't have 2+ same values
    one_hot_constraints_layer = [
        # m -> layer
        # n -> physical qubit
        # v -> logical qubit
        equal_to(sum(q[(m * N + n) * N + v] for n in range(N)), 1)
        for m in range(M) for v in range(N)
    ]

    # each qubit doesn't have 2+ values
    one_hot_constraints_num = [
        # m -> layer
        # n -> physical qubit
        # v -> logical qubit
        equal_to(sum(q[(m * N + n) * N + v] for v in range(N)), 1)
        for m in range(M) for n in range(N)
    ]

    # every CX gate must be applied for 2 adjacent qubits
    CXgate_constraints = []
    for m in range(M):
        for g0 in range(0, len(query[m]), 2):
            v0, v1 = query[m][g0], query[m][g0 + 1]

            # v0 and v1 must be adjacent each other
            for i in range(N):
                for j in range(i + 2, N):
                    CXgate_constraints.append(
                        penalty(q[(m * N + i) * N + v0] *
                                q[(m * N + j) * N + v1]))
                    CXgate_constraints.append(
                        penalty(q[(m * N + i) * N + v1] *
                                q[(m * N + j) * N + v0]))

    # q_sub[m][i][j][v] = q[m][i][v] * q[m+1][j][v]
    sub_gate_constraints = []
    for _idx in range((M - 1) * N**3):
        idx = _idx
        m = idx // (N**3)
        idx %= N**3
        i = idx // (N**2)
        idx %= N**2
        j = idx // N
        idx %= N
        v = idx

        sub_gate_constraints.append(
            penalty(3 * q_sub[((m * N + i) * N + j) * N + v] +
                    q[(m * N + i) * N + v] * q[((m + 1) * N + j) * N + v] -
                    2 * q_sub[((m * N + i) * N + j) * N + v] *
                    (q[(m * N + i) * N + v] + q[((m + 1) * N + j) * N + v])))

    # q_C_matrix[m][i][j] = sum(q_sub[m][i][j][v] for v)
    C_matrix_sum_constraints = []
    for _idx in range((M - 1) * N**2):
        idx = _idx
        m = idx // (N**2)
        idx %= N**2
        i = idx // N
        idx %= N
        j = idx

        C_matrix_sum_constraints.append(
            equal_to(
                q_C_matrix[(m * N + i) * N + j] -
                sum(q_sub[((m * N + i) * N + j) * N + v] for v in range(N)),
                0))

    constraints = (sum(one_hot_constraints_layer) +
                   sum(one_hot_constraints_num) + sum(CXgate_constraints) +
                   sum(sub_gate_constraints) + sum(C_matrix_sum_constraints))

    cost = []
    for m in range(M - 1):
        for i1 in range(N):
            for j1 in range(i1):  # i1 > j1
                for i2 in range(N):
                    for j2 in range(i2 + 1, N):  # i2 < j2
                        cost.append(q_C_matrix[(m * N + i1) * N + j1] *
                                    q_C_matrix[(m * N + i2) * N + j2])

            for j1 in range(i1 + 1, N):  # i1 < j1
                for i2 in range(N):
                    for j2 in range(i2):  # i2 > j2
                        cost.append(q_C_matrix[(m * N + i1) * N + j1] *
                                    q_C_matrix[(m * N + i2) * N + j2])

    # print(constraints)
    # print(cost)

    ##########   solve   ##########

    solver = Solver(client)
    model = BinaryQuadraticModel(constraints * constraintWeight + sum(cost))

    result = solver.solve(model)
    if len(result) == 0:
        raise RuntimeError("Any one of constraints is not satisfied.")

    values = result[0].values
    q_values = decode_solution(q_all, values, 1)

    # print(q_values_main)

    ##########   decode the result into string   ##########

    ans = [[-1 for n in range(N)] for m in range(M)]
    for m in range(M):
        for n in range(N):
            for v in range(N):
                if (q_values[(m * N + n) * N + v] > 0.5):
                    ans[m][n] = v

    cost = 0
    for m in range(M - 1):
        cost += calcCost(ans[m], ans[m + 1])

    return cost, ans
예제 #9
0
    def find_feasible_solution(self):
        """find a feasible locations with makespan, found -> set self.used_edges
        """
        # create variables
        q = []
        index = 0
        for t in range(self.makespan):
            q.append([])
            for v in range(self.field["size"]):
                l = len(self.field["adj"][v])+1  # +1 -> stay at the current location
                q[-1].append(
                    amplify.gen_symbols( amplify.BinaryPoly, index, (1, l) )
                )
                index += l

        # set starts
        constraints_starts = [
            equal_to(sum_poly( q[0][v][0] ), 1)    # q[timestep][node][0]
            for v in self.instance["starts"]
        ]

        for v in range(self.field["size"]):
            if v in self.instance["starts"]:
                continue
            # other locations
            for i in range(len(q[0][v][0])):
                q[0][v][0][i] = amplify.BinaryPoly(0)

        # set goals
        constraints_goals = [
            equal_to(sum_poly([ q[-1][u][0][ self.field["adj"][u].index(v) ]
                                for u in self.field["adj"][v] ] +
                              [ q[-1][v][0][ len(self.field["adj"][v]) ] ]),
                     1)
            for v in self.instance["goals"]
        ]

        for v in range(self.field["size"]):
            # other locations
            for i in range(len(self.field["adj"][v])):
                if self.field["adj"][v][i] not in self.instance["goals"]:
                    q[-1][v][0][i] = amplify.BinaryPoly(0)
            if v not in self.instance["goals"]:
                q[-1][v][0][-1] = amplify.BinaryPoly(0)

        # upper bound, in
        constraints_in = [
            less_equal(sum_poly([ q[t][u][0][ self.field["adj"][u].index(v) ]
                                  for u in self.field["adj"][v] ] +
                                [ q[t][v][0][ len(self.field["adj"][v]) ] ]),
                       1)
            for v, t in product(range(self.field["size"]), range(0, self.makespan-1))
        ]

        # upper bound, out
        constraints_out = [
            less_equal(sum_poly( q[t][v][0] ),
                       1)
            for v, t in product(range(self.field["size"]), range(1, self.makespan))
        ]

        # continuity
        constraints_continuity = [
            equal_to(sum_poly([ q[t][u][0][ self.field["adj"][u].index(v) ]
                                for u in self.field["adj"][v] ] +
                              [ q[t][v][0][ len(self.field["adj"][v]) ] ])
                     -
                     sum_poly( q[t+1][v][0] ),
                     0)
            for v, t in product(range(self.field["size"]), range(0, self.makespan-1))
        ]

        # branching
        for v in range(self.field["size"]):
            if not self.field["body"][v]:
                continue
            # unreachable vertexes from starts
            for t in range(0, min(self.DIST_TABLE_FROM_STARTS[v], self.makespan)):
                for i in range(len(q[t][v][0])):
                    q[t][v][0][i] = amplify.BinaryPoly(0)
            # unreachable vertexes to goals
            for t in range(max(self.makespan - self.DIST_TABLE_FROM_GOALS[v] + 1, 0), self.makespan):
                for i in range(len(q[t][v][0])):
                    q[t][v][0][i] = amplify.BinaryPoly(0)

        # set occupied vertex
        for v in range(self.field["size"]):
            if self.field["body"][v]:
                continue
            for t in range(0, self.makespan):
                q[t][v][0][-1] = amplify.BinaryPoly(0)

        # create model
        model = sum(constraints_starts)
        model += sum(constraints_goals)
        if len(constraints_in) > 0:
            model += sum(constraints_in)
        if len(constraints_out) > 0:
            model += sum(constraints_out)
        if len(constraints_continuity) > 0:
            model += sum(constraints_continuity)

        # setup client
        client = FixstarsClient()
        client.token = os.environ['TOKEN']
        client.parameters.timeout = self.timeout

        # solve
        solver = amplify.Solver(client)
        result = solver.solve(model)
        if len(result) > 0:
            self.used_edges = amplify.decode_solution(q, result[0].values)
예제 #10
0
# CS3: Omata, Ando, Hattori, Watanabe
q2020[labs.index("Omata")][grps.index("CS3")] = BinaryPoly(1)
q2020[labs.index("Ando")][grps.index("CS3")] = BinaryPoly(1)
q2020[labs.index("Hattori")][grps.index("CS3")] = BinaryPoly(1)
q2020[labs.index("Watanabe")][grps.index("CS3")] = BinaryPoly(1)

# CS4: Suzuki, Iwanuma, Kinoshita, Nabeshima
q2020[labs.index("Suzuki")][grps.index("CS4")] = BinaryPoly(1)
q2020[labs.index("Iwanuma")][grps.index("CS4")] = BinaryPoly(1)
q2020[labs.index("Kinoshita")][grps.index("CS4")] = BinaryPoly(1)
q2020[labs.index("Nabeshima")][grps.index("CS4")] = BinaryPoly(1)

##################################################################################
# 行(研究室)に対する制約: one-hot制約(1つの研究室が属するグループは1つだけ)
row_constraints = [
    equal_to(sum_poly([q[i][j] for j in range(ngrp)]), 1) for i in range(nlab)
]

##################################################################################
# 制約
constraints = sum(row_constraints)

# モデル
model = cost + 5 * constraints

# ソルバの生成
solver = Solver(client)
# solver.filter_solution = False  # 実行可能解以外をフィルタリングしない

##################################################################################
# ソルバ起動
예제 #11
0
g = (sum_poly(q) - 1)**2  # one-hot 制約に対応したペナルティ関数

print("One-Hot")
print(f"g = {g}")

# 問題を解いて結果を表示
result = solver.solve(g)
for sol in result:
    energy = sol.energy
    values = sol.values

    print(f"energy = {energy}, {q} = {decode_solution(q, values)}")

###########################################################
# 等式制約:q0 * q1 + q2 = 1
g = equal_to(q[0] * q[1] + q[2], 1)  # 等式制約

print("Equal")
print(f"g = {g}")

# 問題を解いて結果を表示
result = solver.solve(g)
for sol in result:
    energy = sol.energy
    values = sol.values

    print(f"energy = {energy}, {q} = {decode_solution(q, values)}")

###########################################################
# 不等式制約 less_equal:q0 + q1 + q2 <= 1
g = less_equal(sum_poly(q), 1)  # 不等式制約
예제 #12
0
from amplify import BinaryQuadraticModel, Solver, decode_solution
from amplify.client import FixstarsClient
from amplify import BinaryPoly, gen_symbols, sum_poly
from amplify.constraint import equal_to
q = gen_symbols(BinaryPoly, 3)
H = equal_to(sum_poly(q), 3)
model = BinaryQuadraticModel(H)
solver = Solver(client)
result = solver.solve(model)
values = result[0].values
print(f"q = {decode_solution(q, values)}")