def compute_defense(att_stg,
                    prod_dist,
                    num_of_hp=args.fix_honeypots,
                    rationality=args.fix_rationality):
    # production ports and attacker"s strategy
    df = DataFrame('P')
    ports = getRelPorts(att_stg, prod_dist, num=25)
    df.setColumn('P', list(ports))

    #ports = getAllPorts(att_stg, prod_dist)
    #print(('Considered ports are: ', ports))
    att = [att_stg.get(x, 0) for x in ports]
    prod = [prod_dist.get(x, 0) for x in ports]
    #print(('Attack ports: ', att, len(att)))
    #print(('Dist ports: ', prod, len(prod)))

    df.addColumn('s', prod)
    df.addColumn('p', att)

    ampl = AMPL(Environment(args.ampl))
    ampl.setOption('solver', args.solver)
    # ampl.setOption('verbosity', 'terse')
    # Read the model file
    ampl.read(args.model)

    # Assign data to s
    ampl.setData(df, 'P')
    ampl.eval('let L :=  {}; let rat := {};'.format(num_of_hp, rationality))

    #print(df)
    # Solve the model
    with suppress_stdout():
        ampl.solve()
    reward = ampl.getObjective("reward").value()

    hp_stg = ampl.getData("{j in P} h[j]")
    output = dict()
    stg_json = list()
    for k, v in hp_stg.toDict().items():
        stg_json.append({"port": int(k), "prob": v})

    output.update({"stg": stg_json})
    output.update({"reward": reward})
    output.update({"rationality": rationality})
    output.update({"num_of_hp": num_of_hp})
    output.update({"used_hps": ampl.getData("tot").toDict().popitem()[1]})

    ampl.close()
    return output
예제 #2
0
    def testDataFrame(self):
        ampl = self.ampl
        # Create first dataframe (for data indexed over NUTR)
        # Add data row by row
        df1 = DataFrame('NUTR', ('n_min', 'n_max'))
        df1.addRow(('A', 700, 20000))
        df1.addRow(('B1', 700, 20000))
        df1.addRow(('B2', 700, 20000))
        df1.addRow(('C', 700, 20000))
        df1.addRow(('CAL', 16000, 24000))
        df1.addRow(('NA', 0.0, 50000))

        # Create second dataframe (for data indexed over FOOD)
        # Add column by column
        df2 = DataFrame('FOOD')
        foods = ['BEEF', 'CHK', 'FISH', 'HAM', 'MCH', 'MTL', 'SPG', 'TUR']
        df2.setColumn('FOOD', foods)
        contents = [2] * 8
        df2.addColumn('f_min', contents)
        contents = [10] * 8
        df2.addColumn('f_max', contents)
        costs = [3.19, 2.59, 2.29, 2.89, 1.89, 1.99, 1.99, 2.49]
        df2.addColumn('cost', costs)

        print(df2.getColumn('FOOD'))
        for index in df2.getColumn('FOOD'):
            print(df2.getRow(index))

        # Create third dataframe, to assign data to the AMPL entity
        # param amt{NUTR, FOOD};
        df3 = DataFrame(('NUTR', 'FOOD'))
        # Populate the set columns
        nutrWithMultiplicity = [''] * 48
        foodWithMultiplicity = [''] * 48
        i = 0
        for n in range(6):
            for f in range(8):
                print(df1.getRowByIndex(n)[0])
                nutrWithMultiplicity[i] = df1.getRowByIndex(n)[0]
                foodWithMultiplicity[i] = foods[f]
                i += 1
        df3.setColumn('NUTR', nutrWithMultiplicity)
        df3.setColumn('FOOD', foodWithMultiplicity)

        # Populate with all these values
        values = [
            60, 8, 8, 40, 15, 70, 25, 60, 10, 20, 15, 35, 15, 15, 25, 15, 15,
            20, 10, 10, 15, 15, 15, 10, 20, 0, 10, 40, 35, 30, 50, 20, 295,
            770, 440, 430, 315, 400, 370, 450, 968, 2180, 945, 278, 1182, 896,
            1329, 1397
        ]
        df3.addColumn('amt', values)
예제 #3
0
def main(argc, argv):
    from amplpy import AMPL, DataFrame
    os.chdir(os.path.dirname(__file__) or os.curdir)
    try:
        ampl = AMPL()

        if argc > 1:
            ampl.setOption('solver', argv[1])

        # Read the model file
        modelDirectory = argv[2] if argc == 3 else os.path.join('..', 'models')
        ampl.read(os.path.join(modelDirectory, 'diet/diet.mod'))

        foods = ['BEEF', 'CHK', 'FISH', 'HAM', 'MCH', 'MTL', 'SPG', 'TUR']
        costs = [3.59, 2.59, 2.29, 2.89, 1.89, 1.99, 1.99, 2.49]

        fmin = [2, 2, 2, 2, 2, 2, 2, 2]
        fmax = [10, 10, 10, 10, 10, 10, 10, 10]

        df = DataFrame('FOOD')
        df.setColumn('FOOD', foods)
        df.addColumn('cost', costs)
        df.addColumn('f_min', fmin)
        df.addColumn('f_max', fmax)
        ampl.setData(df, 'FOOD')

        nutrients = ['A', 'C', 'B1', 'B2', 'NA', 'CAL']
        nmin = [700, 700, 700, 700, 0, 16000]
        nmax = [20000, 20000, 20000, 20000, 50000, 24000]

        df = DataFrame('NUTR')
        df.setColumn('NUTR', nutrients)
        df.addColumn('n_min', nmin)
        df.addColumn('n_max', nmax)
        ampl.setData(df, 'NUTR')

        amounts = [[60, 8, 8, 40, 15, 70, 25, 60],
                   [20, 0, 10, 40, 35, 30, 50, 20],
                   [10, 20, 15, 35, 15, 15, 25, 15],
                   [15, 20, 10, 10, 15, 15, 15, 10],
                   [928, 2180, 945, 278, 1182, 896, 1329, 1397],
                   [295, 770, 440, 430, 315, 400, 379, 450]]

        df = DataFrame(('NUTR', 'FOOD'), 'amt')
        df.setValues({(nutrient, food): amounts[i][j]
                      for i, nutrient in enumerate(nutrients)
                      for j, food in enumerate(foods)})
        ampl.setData(df)

        ampl.solve()

        print('Objective: {}'.format(ampl.getObjective('total_cost').value()))
    except Exception as e:
        print(e)
        raise
예제 #4
0
    def testDataFrame(self):
        ampl = self.ampl
        # Create first dataframe (for data indexed over NUTR)
        # Add data row by row
        df1 = DataFrame("NUTR", ("n_min", "n_max"))
        df1.addRow(("A", 700, 20000))
        df1.addRow(("B1", 700, 20000))
        df1.addRow(("B2", 700, 20000))
        df1.addRow(("C", 700, 20000))
        df1.addRow(("CAL", 16000, 24000))
        df1.addRow(("NA", 0.0, 50000))

        # Create second dataframe (for data indexed over FOOD)
        # Add column by column
        df2 = DataFrame("FOOD")
        foods = ["BEEF", "CHK", "FISH", "HAM", "MCH", "MTL", "SPG", "TUR"]
        df2.setColumn("FOOD", foods)
        self.assertEqual(list(df2.getColumn("FOOD")), foods)
        contents = [2] * 8
        df2.addColumn("f_min", contents)
        self.assertEqual(list(df2.getColumn("f_min")), contents)
        contents = [10] * 8
        df2.addColumn("f_max", contents)
        self.assertEqual(list(df2.getColumn("f_max")), contents)
        costs = [3.19, 2.59, 2.29, 2.89, 1.89, 1.99, 1.99, 2.49]
        df2.addColumn("cost", costs)
        self.assertEqual(list(df2.getColumn("cost")), costs)
        labels = [random.choice(string.ascii_letters)] * 8
        df2.addColumn("labels", labels)
        self.assertEqual(list(df2.getColumn("labels")), labels)
        df2.addColumn("empty", [])
        self.assertEqual(list(df2.getColumn("empty")), [None] * 8)

        print(df2.getColumn("FOOD"))
        for index in df2.getColumn("FOOD"):
            print(df2.getRow(index))

        # Create third dataframe, to assign data to the AMPL entity
        # param amt{NUTR, FOOD};
        df3 = DataFrame(("NUTR", "FOOD"))
        # Populate the set columns
        nutrWithMultiplicity = [""] * 48
        foodWithMultiplicity = [""] * 48
        i = 0
        for n in range(6):
            for f in range(8):
                print(df1.getRowByIndex(n)[0])
                nutrWithMultiplicity[i] = df1.getRowByIndex(n)[0]
                foodWithMultiplicity[i] = foods[f]
                i += 1
        df3.setColumn("NUTR", nutrWithMultiplicity)
        df3.setColumn("FOOD", foodWithMultiplicity)

        # Populate with all these values
        values = [
            60,
            8,
            8,
            40,
            15,
            70,
            25,
            60,
            10,
            20,
            15,
            35,
            15,
            15,
            25,
            15,
            15,
            20,
            10,
            10,
            15,
            15,
            15,
            10,
            20,
            0,
            10,
            40,
            35,
            30,
            50,
            20,
            295,
            770,
            440,
            430,
            315,
            400,
            370,
            450,
            968,
            2180,
            945,
            278,
            1182,
            896,
            1329,
            1397,
        ]
        df3.addColumn("amt", values)
예제 #5
0
def main(argc, argv):
    from amplpy import AMPL, DataFrame
    os.chdir(os.path.dirname(__file__) or os.curdir)
    try:
        # Create first dataframe (for data indexed over NUTR)
        # Add data row by row
        df1 = DataFrame('NUTR', ('n_min', 'n_max'))
        df1.addRow('A', 700, 20000)
        df1.addRow('B1', 700, 20000)
        df1.addRow('B2', 700, 20000)
        df1.addRow('C', 700, 20000)
        df1.addRow('CAL', 16000, 24000)
        df1.addRow('NA', 0.0, 50000)

        # Create second dataframe (for data indexed over FOOD)
        # Add column by column
        df2 = DataFrame('FOOD')
        foods = ['BEEF', 'CHK', 'FISH', 'HAM', 'MCH', 'MTL', 'SPG', 'TUR']
        df2.setColumn('FOOD', foods)
        contents = [2] * 8
        df2.addColumn('f_min', contents)
        contents = [10] * 8
        df2.addColumn('f_max', contents)
        costs = [3.19, 2.59, 2.29, 2.89, 1.89, 1.99, 1.99, 2.49]
        df2.addColumn('cost', costs)

        # Create third dataframe, to assign data to the AMPL entity
        # param amt{NUTR, FOOD};
        df3 = DataFrame(index=('NUTR', 'FOOD'))
        # Populate the set columns
        nutrWithMultiplicity = [''] * 48
        foodWithMultiplicity = [''] * 48
        i = 0
        for n in range(6):
            for f in range(8):
                print(df1.getRowByIndex(n)[0])
                nutrWithMultiplicity[i] = df1.getRowByIndex(n)[0]
                foodWithMultiplicity[i] = foods[f]
                i += 1
        df3.setColumn('NUTR', nutrWithMultiplicity)
        df3.setColumn('FOOD', foodWithMultiplicity)

        # Populate with all these values
        values = [
            60, 8, 8, 40, 15, 70, 25, 60, 10, 20, 15, 35, 15, 15, 25, 15, 15,
            20, 10, 10, 15, 15, 15, 10, 20, 0, 10, 40, 35, 30, 50, 20, 295,
            770, 440, 430, 315, 400, 370, 450, 968, 2180, 945, 278, 1182, 896,
            1329, 1397
        ]
        df3.addColumn('amt', values)

        # Create AMPL object
        ampl = AMPL()

        if argc > 1:
            ampl.setOption('solver', argv[1])

        # Read the model file
        modelDirectory = argv[2] if argc == 3 else os.path.join('..', 'models')
        ampl.read(os.path.join(modelDirectory, 'diet/diet.mod'))

        # Assign data to NUTR, n_min and n_max
        ampl.setData(df1, 'NUTR')
        # Assign data to FOOD, f_min, f_max and cost
        ampl.setData(df2, 'FOOD')
        # Assign data to amt
        ampl.setData(df3)
        # Solve the model
        ampl.solve()

        # Print out the result
        print("Objective function value: {}".format(
            ampl.getObjective('total_cost').value()))

        # Get the values of the variable Buy in a dataframe
        results = ampl.getVariable('Buy').getValues()
        # Print
        print(results)
    except Exception as e:
        print(e)
        raise