예제 #1
0
    def func(self, browser):
        """ Subtract a baseline from the currently plotted traces.
        Baseline is the average of all datapoints between the 
        current position of the data cursors. 
    
        Options:
        1) keep original traces intact and create processed copies
        """
    
        ############################################
        # ANALYSIS FUNCTION
        
        plotWidget = browser.ui.dataPlotsWidget
        toolsWidget = browser.ui.oneDimToolStackedWidget   

        # Copy data if required
        if self.keepData.isChecked():
            aux.make_data_copy(browser, plotWidget)
    
        # Get dt
        dt = aux.get_attr(plotWidget.plotDataItems, 'dt')[0]

        # Make average between cursors and subract for each trace 
        for item in plotWidget.plotDataItems:                        
            bslData, c1 = aux.get_dataRange(plotWidget, item)             
            bsl = np.mean(bslData)
            item.data = item.data - bsl
            item.analysis['baselineStart'] = c1 
            item.analysis['baselineEnd'] = c1+len(bslData)
            
        # Re-plot data
        pgplot.replot(browser, plotWidget)     
예제 #2
0
    def func(self, browser):
        """ Subtract a baseline from the currently plotted traces.
        Baseline is the average of all datapoints between the 
        current position of the data cursors. 
    
        Options:
        1) keep original traces intact and create processed copies
        """

        ############################################
        # ANALYSIS FUNCTION

        plotWidget = browser.ui.dataPlotsWidget
        toolsWidget = browser.ui.oneDimToolStackedWidget

        # Copy data if required
        if self.keepData.isChecked():
            aux.make_data_copy(browser, plotWidget)

        # Get dt
        dt = aux.get_attr(plotWidget.plotDataItems, 'dt')[0]

        # Make average between cursors and subract for each trace
        for item in plotWidget.plotDataItems:
            bslData, c1 = aux.get_dataRange(plotWidget, item)
            bsl = np.mean(bslData)
            item.data = item.data - bsl
            item.analysis['baselineStart'] = c1
            item.analysis['baselineEnd'] = c1 + len(bslData)

        # Re-plot data
        pgplot.replot(browser, plotWidget)
예제 #3
0
    def func(self, browser):
        """ Plot histogram from selected data

        Options:
        1) clear axes
        2) bin size
        3) normalised
        4) orientation
        5) type
        6) color
        """

        ############################################
        # ANALYSIS FUNCTION

        # Read options
        clearAxis = self.clearAxis.isChecked()
        binSize = float(self.binSize.text())
        orientation = str(self.orientation.currentText())
        histtype = str(self.type.currentText())

        # Get selected item in data tree
        traces = self.plotWidget.plotDataItems
        dt = traces[0].attrs['dt']

        # Get X and Y data and check cursors
        data, c1 = aux.get_dataRange(self.plotWidget, traces[0])

        # Calculate number of bins
        dataRange = np.abs(data.max() - data.min())
        nbins = np.ceil(dataRange / binSize)

        # Remove all existing axes
        if clearAxis:
            for ax in self.canvas.fig.axes:
                self.canvas.fig.delaxes(ax)

        # Create grid
        nPlots, width_ratios = 1, [1]
        gs = gridspec.GridSpec(1, nPlots, width_ratios=width_ratios)

        # Create subplots
        ax = []
        for plot in range(nPlots):
            ax.append(self.canvas.fig.add_subplot(gs[plot]))

        # Plot histogram
        h = ax[0].hist(data,
                       bins=nbins,
                       orientation=orientation,
                       histtype=histtype,
                       normed=True,
                       color='k')

        self.canvas.draw()
예제 #4
0
def get_data():
    """ Return the data currently plotted.
    """
    data = []
    for item in browser.ui.dataPlotsWidget.plotDataItems:
        dataRange, c1 = aux.get_dataRange(browser.ui.dataPlotsWidget, item)
        data.append(dataRange)
    data = np.array(data) # this will return an error if dts are different (data is not the same len)
    attrs = item.attrs    
    if data.shape[0]==1:
        return data.ravel()
    else:    
        return data
예제 #5
0
    def func(self, browser):
        """ Plot histogram from selected data

        Options:
        1) clear axes
        2) bin size
        3) normalised
        4) orientation
        5) type
        6) color
        """

        ############################################
        # ANALYSIS FUNCTION      

        # Read options
        clearAxis = self.clearAxis.isChecked()
        binSize = float(self.binSize.text())
        orientation = str(self.orientation.currentText())
        histtype = str(self.type.currentText())

        # Get selected item in data tree
        traces = self.plotWidget.plotDataItems
        dt = traces[0].attrs['dt']

        # Get X and Y data and check cursors
        data, c1 = aux.get_dataRange(self.plotWidget, traces[0])             

        # Calculate number of bins
        dataRange = np.abs(data.max()-data.min())
        nbins = np.ceil(dataRange/binSize)

        # Remove all existing axes
        if clearAxis:
            for ax in self.canvas.fig.axes:
                self.canvas.fig.delaxes(ax)
       
        # Create grid
        nPlots, width_ratios = 1, [1]
        gs = gridspec.GridSpec(1, nPlots, width_ratios=width_ratios)    

        # Create subplots
        ax = []
        for plot in range(nPlots):
            ax.append(self.canvas.fig.add_subplot(gs[plot]))

        # Plot histogram
        h = ax[0].hist(data, bins=nbins, orientation=orientation, histtype=histtype,
                             normed=True, color='k')

        self.canvas.draw()
예제 #6
0
def get_data():
    """ Return the data currently plotted.
    """
    data = []
    for item in browser.ui.dataPlotsWidget.plotDataItems:
        dataRange, c1 = aux.get_dataRange(browser.ui.dataPlotsWidget, item)
        data.append(dataRange)
    data = np.array(
        data
    )  # this will return an error if dts are different (data is not the same len)
    attrs = item.attrs
    if data.shape[0] == 1:
        return data.ravel()
    else:
        return data
    def func(self, browser):
        """ Analyse tracking data for user defined zones in
        the arena. Currently the two zones are defined by
        a divider on the X or Y coordinates.
        
        Properties measured:
        1 - time spent in each zone normalized to total time
        2 - number of zone transitions 

        Options:
        1) Position of the divider between the two zones
        """

        ############################################
        # ANALYSIS FUNCTION

        # Read options
        zoneDivider = float(self.plotWidget.zoneDividerCursorPos)

        # Get data and check cursors
        traces = self.plotWidget.plotDataItems
        dt = traces[0].attrs['dt']
        data, c1 = aux.get_dataRange(self.plotWidget, traces[0])

        # Get time in each zone
        zoneTime = []
        totalTime = float(len(data))
        zone1 = np.sum(data < zoneDivider)
        zone2 = totalTime - zone1
        zoneTime.append(zone1 / totalTime)
        zoneTime.append(zone2 / totalTime)

        # Get number of zone transitions
        transitions = np.sum(np.diff(data < zoneDivider))

        # Store data
        results = []
        results.append(['Time', zoneTime])
        results.append(['Transitions', [transitions]])
        aux.save_results(self.browser, 'Zone_analysis', results)
예제 #8
0
    def func(self, browser):
        """ Plot tracking data in XY from currently plotted X and Y data.
        Output goes to Matplotlib tab.

        Take data between cursors if they are active or the whole trace
        if there are no cursors.

        Options:
        1) Plot histogram
        2) Plot long axis over time
        """

        ############################################
        # ANALYSIS FUNCTION

        # Read options
        hist = self.histOption.isChecked()
        axisTime = self.plotAxisOption.isChecked()
        color = str(self.color.currentText())

        # Get plotted traces
        traces = self.plotWidget.plotDataItems
        dt = traces[0].attrs['dt']

        # Get X and Y data and check cursors
        X, c1 = aux.get_dataRange(self.plotWidget, traces[0])
        Y, c1 = aux.get_dataRange(self.plotWidget, traces[1])

        # Make sure Y is the long axis
        if X.max() > Y.max():
            Yold = Y
            Y = X
            X = Yold

        # Remove all existing axes
        for ax in self.canvas.fig.axes:
            self.canvas.fig.delaxes(ax)

        # Create grid
        if hist:
            if axisTime:
                nPlots, width_ratios = 3, [1, 4, 1]
                histAx = 2
            else:
                nPlots, width_ratios = 2, [1, 1]
                histAx = 1
        elif axisTime:
            nPlots, width_ratios = 2, [1, 5]
        else:
            nPlots, width_ratios = 1, [1]
        gs = gridspec.GridSpec(1, nPlots, width_ratios=width_ratios)

        # Create subplots
        ax = []
        for plot in range(nPlots):
            ax.append(self.canvas.fig.add_subplot(gs[plot]))

        # Plot tracking
        ax[0].plot(X, Y, color)

        # Plot long axis over time
        if axisTime:
            xaxis = np.arange(0, len(Y), dt)
            ax[1].plot(xaxis, Y, color)

        # Plot histogram
        if hist:
            h = ax[histAx].hist(Y,
                                bins=30,
                                orientation='horizontal',
                                histtype='stepfilled',
                                normed=True,
                                color=color)

        self.canvas.draw()
예제 #9
0
    def func(self, browser):
        """ Calculate average trace from currently plotted traces. If cursors are
        selected the average is calculated for the range within the cursors.

        Options:
        1) create new entry in Working Data tree with the result
        2) plot average with orginal traces
        3) caclulate SD and SEM
        """
    
        ############################################
        # ANALYSIS FUNCTION
        
        plotWidget = browser.ui.dataPlotsWidget
        toolsWidget = browser.ui.oneDimToolStackedWidget   
        results = []

        # Get data and cursors
        data = []
        for item in plotWidget.plotDataItems:
            dt = item.attrs['dt']
            dataRange, c1 = aux.get_dataRange(plotWidget, item)    
            data.append(dataRange)   
        data = np.array(data)

        # Calculate average and make h5item for plotting
        try:
            #avgData = np.nanmean(data[:, c1:c2], 0)
            avgData = np.mean(data, 0)
            avgItem = aux.make_h5item('avg', avgData, plotWidget.plotDataItems[0].attrs)
            results.append(['avg_trace', avgData, item.attrs])  
        except ValueError:  
            aux.error_box('Cannot calculate average on data with different lengths', sys.exc_info(),
                          'Please ensure that all traces have the same length') 
            return

        # Calculate SD and SEM
        if self.sdBox.isChecked():
            #sdData = np.nanstd(data[:, c1:c2], 0)
            sdData = np.std(data, 0)            
            avgPlusSDItem = aux.make_h5item('avg+sd', avgData+sdData, plotWidget.plotDataItems[0].attrs)
            avgMinusSDItem = aux.make_h5item('avg-sd', avgData-sdData, plotWidget.plotDataItems[0].attrs)
            results.append(['avg+sd', avgData+sdData, item.attrs])  
            results.append(['avg-sd', avgData-sdData, item.attrs])  
 
        if self.semBox.isChecked():
            #semData = np.nanstd(data[:, c1:c2], 0)/np.sqrt(len(data))
            semData = np.std(data, 0)/np.sqrt(len(data))
            avgPlusSEMItem = aux.make_h5item('avg+sem', avgData+semData, plotWidget.plotDataItems[0].attrs)
            avgMinusSEMItem = aux.make_h5item('avg-sem', avgData-semData, plotWidget.plotDataItems[0].attrs)
            results.append(['avg+sem', avgData+semData, item.attrs])  
            results.append(['avg-sem', avgData-semData, item.attrs])  

        # Plot data
        if self.showTraces.isChecked(): 
            clear = False
        else:
            clear = True
        pgplot.browse_singleData(browser, plotWidget, avgItem, clear=clear, color='r')

        # Store data
        if self.storeResult.isChecked():     
            aux.save_results(browser, item.parent().text(0)+'_average', results) 
예제 #10
0
    def func(self, browser):
        """ Temporary event detection function using amplitude
        threshold only. Noise safety is for when coming down from
        peak, go down an extra amount from threshold before starting
        to search for the next event.
        """
        ############################################
        # ANALYSIS FUNCTION

        # Read detection options
        try:
            threshold = float(self.browser.ui.dataPlotsWidget.cursorThsPos)
        except NameError:
            aux.error_box('No threshold selected')
            return

        try:
            noiseSafety = float(self.eventNoiseSafety.text())
            smoothFactor = float(self.eventSmooth.text())
            direction = str(self.eventDirection.currentText())
            minDuration = float(self.eventMinDuration.text())
            detectionTrace = str(self.detectionTrace.currentText())
            minInterval = float(self.eventMinInterval.text())
        except NameError:
            aux.error_box('Invalid detection value')
        bslWindow = 1.0
        slowestRise = 0.5
        #minEventInterval = 5000.0

        # Ensure that noise safety has the same sign as the threshold
        noiseSafety = np.sign(threshold) * abs(noiseSafety)

        # Get widgets
        plotWidget = browser.ui.dataPlotsWidget

        # Get dt list and attrs for use in concatenated data
        dtList = aux.get_attr(self.browser.ui.dataPlotsWidget.plotDataItems,
                              'dt')
        dt = dtList[0]
        self.dt = dt
        item = self.browser.ui.dataPlotsWidget.plotDataItems[0]
        attrs = item.attrs

        # Get data currently plotted and concatenate in a single sweep
        data = []
        for item in plotWidget.plotDataItems:
            trace, c1 = aux.get_dataRange(plotWidget, item)
            data.append(trace)
        data = np.array(data).ravel()

        # Get derivative trace and filter
        dtrace = None
        if detectionTrace == 'derivative':
            print threshold
            dtrace = np.diff(data)
            dtrace = acq4filter.besselFilter(dtrace, 2000, 1, dt / 1000, 'low',
                                             True)

        # Smooth
        self.trace = data
        if smoothFactor > 1:
            data = smooth.smooth(data,
                                 window_len=smoothFactor,
                                 window='hanning')

        # Comparison functions
        if direction == 'negative':
            comp = lambda a, b: a < b
        elif direction == 'positive':
            comp = lambda a, b: a > b

        # Correct times for dt
        minEventInterval = minInterval / dt
        minDuration = minDuration / dt
        bslWindow = bslWindow / dt
        slowestRise = slowestRise / dt

        # Run detection
        eventCounter, i = 0, 0  #+bslWindow/dt+slowestRise/dt
        iLastDetection = 0
        self.xOnsets, self.yOnsets = [], []
        bsl = 0
        if dtrace is not None:
            detectionData = dtrace
        else:
            detectionData = data
        while i < len(detectionData):
            # Sliding baseline
            #bsl = np.mean(data[i-bslWindow-slowestRise:i])
            if comp(detectionData[i] - bsl, threshold):
                print i, i - iLastDetection
                if i - iLastDetection > minEventInterval:  # Min inter-event interval
                    self.xOnsets.append(i)
                    self.yOnsets.append(data[i])
                    eventCounter += 1
                    iLastDetection = i
                    while i < len(detectionData) and comp(
                            detectionData[i] - bsl, (threshold - noiseSafety)):
                        i += 1  # skip values if index in bounds AND until the value is below/above threshold again
                    if i - iLastDetection < minDuration:  # Event is too brief
                        self.xOnsets.pop()
                        self.yOnsets.pop()
                        eventCounter -= 1
                else:
                    i += 1  # for min event interval
            else:
                i += 1

        frequency = eventCounter / (len(data) * dt) * 1000  # in Hz
        print eventCounter, 'events detected at', frequency, 'Hz'

        # Store event onsets and peaks in h5 data tree
        results = []
        results.append(['trace', np.array(self.trace), attrs])
        results.append(['xOnsets', np.array(self.xOnsets)])
        results.append(['yOnsets', np.array(self.yOnsets)])
        results.append(['number', np.array([eventCounter])])
        results.append(['frequency', np.array([frequency])])
        aux.save_results(browser, 'Event_Detection', results)

        # Plot results
        self.show_events(data, np.array(self.xOnsets), np.array(self.yOnsets),
                         dt)

        # Turn cursors off (the plot has been cleared so there are no cursors displayed)
        self.browser.ui.actionShowCursors.setChecked(False)
        plotWidget.cursor = False
예제 #11
0
    def func(self, browser):
        """ Calculate the probability of having an event per time bin
        Very simple threshold crossing event detection.    

        Options:
        1) Threshold for detecting spikes
        2) Time bin size (ms)
        3) Event direction
        """
    
        ############################################
        # ANALYSIS FUNCTION
        
        # Read detection options
        try:
            threshold = float(self.browser.ui.dataPlotsWidget.cursorThsPos)
        except NameError:
            aux.error_box('No threshold selected')
            return         
        try:
            timeBin = np.abs(float(self.timeBin.text())) 
        except ValueError:
            aux.error_box('Invalid time bin')
            return              
        direction = str(self.eventDirection.currentText())
   
        # Get widgets
        plotWidget = browser.ui.dataPlotsWidget
        toolsWidget = browser.ui.oneDimToolStackedWidget
    
        # Get parent text of plotted items
        try:
            parentText = plotWidget.plotDataItems[0].parent().text(0) # Assumes all plotted data have the same parent
        except AttributeError:   # Parent = None
            parentText = 'Data'
    
        # Detect events in each trace
        if direction=='negative':
            comp = lambda a, b: a < b
        elif direction=='positive':
            comp = lambda a, b: a > b
  
        # Check time bin (using the first plotted item)
        item = plotWidget.plotDataItems[0]
        dt = item.attrs['dt']
        data, c1 = aux.get_dataRange(plotWidget, item)
        if (timeBin/dt==0) or (len(data)<timeBin/dt):
            aux.error_box('Invalid time bin', infoText='Make sure time bin is smaller than the selected data range')
            return  
  
        # Detect events
        results = []        
        plotWidget.clear()
        for item in plotWidget.plotDataItems:
            dt = item.attrs['dt']
            data, c1 = aux.get_dataRange(plotWidget, item)
            apCounter, i = 0, 0
            xOnsets, yOnsets  = [], []
            while i<len(data):
                if comp(data[i],threshold):
                    xOnsets.append(i)
                    yOnsets.append(data[i])
                    apCounter+=1
                    while i<len(data) and comp(data[i],threshold):
                        i+=1 # skip values if index in bounds AND until the value is below/above threshold again
                else:
                    i+=1
            
            # Get events per time bin
            binSize = int(timeBin/dt)
            nbins = np.ceil(len(data)/binSize)
            eventCounter = []
            for b in np.arange(1, nbins+1):
                count = np.sum((xOnsets>(b-1)*binSize) & (xOnsets<(b*binSize)))
                eventCounter.append(count)
            bins = np.arange(0+binSize/2., nbins*binSize+binSize/2., binSize)*dt

            # Store data     
            results.append(['event_counts', np.array(eventCounter)]) 

            # Plot detected events
            self.show_events(data, np.array(xOnsets), np.array(yOnsets), dt)  

        # Turn cursors off (the plot has been cleared so there are no cursors displayed)    
        self.browser.ui.actionShowCursors.setChecked(False)
        plotWidget.cursor = False       

        # Store results
        results.append(['time_bins', bins])
        aux.save_results(browser, parentText+'_eventProbability', results)     
예제 #12
0
    def func(self, browser):
        """ Perform some operations on selected traces. 
    
        Options:
        1) keep original traces intact and create processed copies
        2) delete the data points between the cursors
        3) offset the start of the trace by a number of X-axis points (adds NaNs)
        """
    
        ############################################
        # ANALYSIS FUNCTION
        
        # Get widgets
        plotWidget = browser.ui.dataPlotsWidget
        toolsWidget = browser.ui.oneDimToolStackedWidget

        # Get options
        if self.offsetBox.isChecked():
          try:    
            nOffsetPoints = float(self.offsetPoints.text())
          except ValueError:
            aux.error_box('Invalid number of points')
            return

        if self.scaleBox.isChecked():
          try:    
            vScale = float(self.scaleValue.text())
          except ValueError:
            aux.error_box('Invalid scale entry')
            return

        # Copy data if required
        if self.keepData.isChecked():
            aux.make_data_copy(browser, plotWidget)

        # Iterate through traces
        i = 0
        for item in plotWidget.plotDataItems:
            
            # Get dt and data range
            dt = item.attrs['dt']
            data, c1, cx1, cx2 = aux.get_dataRange(plotWidget, item, cursors=True)

            # Check baseline
            if 'baselineStart' in item.analysis:
                bsl = 0  # the mean of the baseline will always be 0
            else:
                bsl = np.mean(item.data[0:round(1./dt)]) 
            
            # Scale data
            if self.scaleBox.isChecked():
                item.data = item.data * vScale

            if self.normalizeBox.isChecked():
                peakDirection = str(self.peakComboBox.currentText())
                if peakDirection=='Positive peak':
                    peak = np.max(data)
                else:
                    peak = -np.min(data)
                item.data = item.data / peak               

            # Delete points
            if self.delPointsBox.isChecked():
                item.data = np.delete(item.data, np.s_[c1:c1+len(data)+1])

            # Add offset
            if self.offsetBox.isChecked():
                offset = int(nOffsetPoints/dt)
                item.data = np.insert(item.data, 0, np.zeros(offset) + np.nan)          

            # Operation against selected data (currently only works for one selected data item)
            if self.selectedBox.isChecked():
                operation = str(self.selectedComboBox.currentText())
                if operation=='Subtract':
                    op = lambda a, b: a - b
                if operation=='Add':
                    op = lambda a, b: a + b
                try:
                    selectedItem = browser.ui.workingDataTree.selectedItems()[i]               
                    item.data = op(item.data, selectedItem.data)                
                except IndexError:
                    aux.error_box('Number of selected data items does not match number of plotted traces')
                    return
            i+=1                     

        # Re-plot data
        pgplot.replot(browser, plotWidget) 
예제 #13
0
    def func(self, browser):
        """ Fit data traces within cursor-defined range
    
        Options:
        1) Equation
        2) Initial guesses
        """
    
        ############################################
        # ANALYSIS FUNCTION
        
        # Get widgets
        plotWidget = browser.ui.dataPlotsWidget
        toolsWidget = browser.ui.oneDimToolStackedWidget

        # Replot data to clear previous measure plot points
        pgplot.replot(browser, plotWidget)
    
        # Get parent text of plotted items
        try:
            parentText = plotWidget.plotDataItems[0].parent().text(0) # Assumes all plotted data have the same parent
        except AttributeError:   # Parent = None
            parentText = 'Data'

        # Get current function
        currentFuncmap = self.dataFit.fitfuncmap[str(self.comboBox.currentText())]

        # Read initial guesses
        pInit = []
        try:        
            nParam = len(currentFuncmap[2])
            for n in range(nParam): pInit.append(float(self.p[n].text()))
        except ValueError:
            aux.error_box('Invalid value in initial guess')
            return              

        # Fit data
        fitResults, fitTraces, fitTracesAttrs = [], [], []
        for item in plotWidget.plotDataItems:  

            # Get data range to fit        
            dt = item.attrs['dt']
            fitTracesAttrs.append(item.attrs)
            yData, c1, cx1, cx2 = aux.get_dataRange(plotWidget, item, cursors=True)
            xRange = pgplot.make_xvector(yData, dt)+cx1
            self.dataFit.c1 = cx1   

            # Fit
            func = currentFuncmap[0]
            fitParams = self.dataFit.fit(func, xRange, yData, pInit) 
            fitResults.append(fitParams)
            print fitParams            
        
            # Plot fitted function over trace
            if self.extendBox.isChecked():
                xRange = pgplot.make_xvector(item.data, dt)
                #xRange = np.arange(plotWidget.viewBox.viewRange()[0][0], plotWidget.viewBox.viewRange()[0][1], dt)
            fittedTrace = func(xRange, *fitParams)
            plotWidget.plot(xRange, fittedTrace, pen=pg.mkPen('r', width=1))
            fitTraces.append(fittedTrace)

        # Store results
        if self.storeBox.isChecked():
            fitResults = np.array(fitResults)
            results = []
            for n in range(np.shape(fitResults)[1]):    
                results.append([str(self.plabels[n].text()), fitResults[:,n]])
            for n in range(len(fitTraces)):
                results.append(['fitTraces_'+str(n), fitTraces[n], fitTracesAttrs[n]])     
            aux.save_results(browser, parentText+'_fit', results)     
예제 #14
0
    def func(self, browser):
        """ Fit data traces within cursor-defined range
    
        Options:
        1) Equation
        2) Initial guesses
        """

        ############################################
        # ANALYSIS FUNCTION

        # Get widgets
        plotWidget = browser.ui.dataPlotsWidget
        toolsWidget = browser.ui.oneDimToolStackedWidget

        # Replot data to clear previous measure plot points
        pgplot.replot(browser, plotWidget)

        # Get parent text of plotted items
        try:
            parentText = plotWidget.plotDataItems[0].parent().text(
                0)  # Assumes all plotted data have the same parent
        except AttributeError:  # Parent = None
            parentText = 'Data'

        # Get current function
        currentFuncmap = self.dataFit.fitfuncmap[str(
            self.comboBox.currentText())]

        # Read initial guesses
        pInit = []
        try:
            nParam = len(currentFuncmap[2])
            for n in range(nParam):
                pInit.append(float(self.p[n].text()))
        except ValueError:
            aux.error_box('Invalid value in initial guess')
            return

        # Fit data
        fitResults, fitTraces, fitTracesAttrs = [], [], []
        for item in plotWidget.plotDataItems:

            # Get data range to fit
            dt = item.attrs['dt']
            fitTracesAttrs.append(item.attrs)
            yData, c1, cx1, cx2 = aux.get_dataRange(plotWidget,
                                                    item,
                                                    cursors=True)
            xRange = pgplot.make_xvector(yData, dt) + cx1
            self.dataFit.c1 = cx1

            # Fit
            func = currentFuncmap[0]
            fitParams = self.dataFit.fit(func, xRange, yData, pInit)
            fitResults.append(fitParams)
            print fitParams

            # Plot fitted function over trace
            if self.extendBox.isChecked():
                xRange = pgplot.make_xvector(item.data, dt)
                #xRange = np.arange(plotWidget.viewBox.viewRange()[0][0], plotWidget.viewBox.viewRange()[0][1], dt)
            fittedTrace = func(xRange, *fitParams)
            plotWidget.plot(xRange, fittedTrace, pen=pg.mkPen('r', width=1))
            fitTraces.append(fittedTrace)

        # Store results
        if self.storeBox.isChecked():
            fitResults = np.array(fitResults)
            results = []
            for n in range(np.shape(fitResults)[1]):
                results.append([str(self.plabels[n].text()), fitResults[:, n]])
            for n in range(len(fitTraces)):
                results.append(
                    ['fitTraces_' + str(n), fitTraces[n], fitTracesAttrs[n]])
            aux.save_results(browser, parentText + '_fit', results)
예제 #15
0
    def func(self, browser):
        """ Calculate the probability of having an event per time bin
        Very simple threshold crossing event detection.    

        Options:
        1) Threshold for detecting spikes
        2) Time bin size (ms)
        3) Event direction
        """

        ############################################
        # ANALYSIS FUNCTION

        # Read detection options
        try:
            threshold = float(self.browser.ui.dataPlotsWidget.cursorThsPos)
        except NameError:
            aux.error_box('No threshold selected')
            return
        try:
            timeBin = np.abs(float(self.timeBin.text()))
        except ValueError:
            aux.error_box('Invalid time bin')
            return
        direction = str(self.eventDirection.currentText())

        # Get widgets
        plotWidget = browser.ui.dataPlotsWidget
        toolsWidget = browser.ui.oneDimToolStackedWidget

        # Get parent text of plotted items
        try:
            parentText = plotWidget.plotDataItems[0].parent().text(
                0)  # Assumes all plotted data have the same parent
        except AttributeError:  # Parent = None
            parentText = 'Data'

        # Detect events in each trace
        if direction == 'negative':
            comp = lambda a, b: a < b
        elif direction == 'positive':
            comp = lambda a, b: a > b

        # Check time bin (using the first plotted item)
        item = plotWidget.plotDataItems[0]
        dt = item.attrs['dt']
        data, c1 = aux.get_dataRange(plotWidget, item)
        if (timeBin / dt == 0) or (len(data) < timeBin / dt):
            aux.error_box(
                'Invalid time bin',
                infoText=
                'Make sure time bin is smaller than the selected data range')
            return

        # Detect events
        results = []
        plotWidget.clear()
        for item in plotWidget.plotDataItems:
            dt = item.attrs['dt']
            data, c1 = aux.get_dataRange(plotWidget, item)
            apCounter, i = 0, 0
            xOnsets, yOnsets = [], []
            while i < len(data):
                if comp(data[i], threshold):
                    xOnsets.append(i)
                    yOnsets.append(data[i])
                    apCounter += 1
                    while i < len(data) and comp(data[i], threshold):
                        i += 1  # skip values if index in bounds AND until the value is below/above threshold again
                else:
                    i += 1

            # Get events per time bin
            binSize = int(timeBin / dt)
            nbins = np.ceil(len(data) / binSize)
            eventCounter = []
            for b in np.arange(1, nbins + 1):
                count = np.sum((xOnsets > (b - 1) * binSize)
                               & (xOnsets < (b * binSize)))
                eventCounter.append(count)
            bins = np.arange(0 + binSize / 2., nbins * binSize + binSize / 2.,
                             binSize) * dt

            # Store data
            results.append(['event_counts', np.array(eventCounter)])

            # Plot detected events
            self.show_events(data, np.array(xOnsets), np.array(yOnsets), dt)

        # Turn cursors off (the plot has been cleared so there are no cursors displayed)
        self.browser.ui.actionShowCursors.setChecked(False)
        plotWidget.cursor = False

        # Store results
        results.append(['time_bins', bins])
        aux.save_results(browser, parentText + '_eventProbability', results)
예제 #16
0
    def func(self, browser):
        """ Generate a FI curve from current steps
    
        Options:
        1) Threshold for detecting spikes
        """
    
        ############################################
        # ANALYSIS FUNCTION
        
        # Read detection options 
        try:
            threshold = float(self.browser.ui.dataPlotsWidget.cursorThsPos)
        except NameError:
            aux.error_box('No threshold selected')
            return
    
        # Get widgets
        plotWidget = browser.ui.dataPlotsWidget
        toolsWidget = browser.ui.oneDimToolStackedWidget
    
        # Get parent text of plotted items
        try:
            parentText = plotWidget.plotDataItems[0].parent().text(0) # Assumes all plotted data have the same parent
        except AttributeError:   # Parent = None
            parentText = 'Data'
    
        # Detect APs in each trace
        comp = lambda a, b: a > b
        apNumber, apFrequency, results = [], [], []
        plotWidget.clear()        
        for item in plotWidget.plotDataItems:
            dt = item.attrs['dt']
            data, c1 = aux.get_dataRange(plotWidget, item)           
            apCounter, i = 0, 0
            xOnsets, yOnsets  = [], []
            while i<len(data):
                if comp(data[i],threshold):
                    xOnsets.append(i)
                    yOnsets.append(data[i])
                    apCounter+=1
                    while i<len(data) and comp(data[i],threshold):
                        i+=1 # skip values if index in bounds AND until the value is below/above threshold again
                else:
                    i+=1
            
            # Calculate AP frequency as 1/mean(ISI)
            isi = np.mean(np.diff(xOnsets))*dt # in ms
            if isi>0:
                freq = 1/(isi/1000.)
            else:
                freq = 0.0

            # Store number of APs and mean frequency
            apNumber.append(apCounter)
            apFrequency.append(freq)         

            # Plot detected APs
            self.show_events(data, np.array(xOnsets), np.array(yOnsets), dt)  
            
        # Turn cursors off (the plot has been cleared so there are no cursors displayed)    
        self.browser.ui.actionShowCursors.setChecked(False)
        plotWidget.cursor = False       

        # Store results
        results.append(['AP_number', np.array(apNumber)])
        results.append(['AP_frequency', np.array(apFrequency)]) 
        aux.save_results(browser, parentText+'_FI', results)     
예제 #17
0
    def func(self, browser):
        """ Generate a FI curve from current steps
    
        Options:
        1) Threshold for detecting spikes
        """

        ############################################
        # ANALYSIS FUNCTION

        # Read detection options
        try:
            threshold = float(self.browser.ui.dataPlotsWidget.cursorThsPos)
        except NameError:
            aux.error_box('No threshold selected')
            return

        # Get widgets
        plotWidget = browser.ui.dataPlotsWidget
        toolsWidget = browser.ui.oneDimToolStackedWidget

        # Get parent text of plotted items
        try:
            parentText = plotWidget.plotDataItems[0].parent().text(
                0)  # Assumes all plotted data have the same parent
        except AttributeError:  # Parent = None
            parentText = 'Data'

        # Detect APs in each trace
        comp = lambda a, b: a > b
        apNumber, apFrequency, results = [], [], []
        plotWidget.clear()
        for item in plotWidget.plotDataItems:
            dt = item.attrs['dt']
            data, c1 = aux.get_dataRange(plotWidget, item)
            apCounter, i = 0, 0
            xOnsets, yOnsets = [], []
            while i < len(data):
                if comp(data[i], threshold):
                    xOnsets.append(i)
                    yOnsets.append(data[i])
                    apCounter += 1
                    while i < len(data) and comp(data[i], threshold):
                        i += 1  # skip values if index in bounds AND until the value is below/above threshold again
                else:
                    i += 1

            # Calculate AP frequency as 1/mean(ISI)
            isi = np.mean(np.diff(xOnsets)) * dt  # in ms
            if isi > 0:
                freq = 1 / (isi / 1000.)
            else:
                freq = 0.0

            # Store number of APs and mean frequency
            apNumber.append(apCounter)
            apFrequency.append(freq)

            # Plot detected APs
            self.show_events(data, np.array(xOnsets), np.array(yOnsets), dt)

        # Turn cursors off (the plot has been cleared so there are no cursors displayed)
        self.browser.ui.actionShowCursors.setChecked(False)
        plotWidget.cursor = False

        # Store results
        results.append(['AP_number', np.array(apNumber)])
        results.append(['AP_frequency', np.array(apFrequency)])
        aux.save_results(browser, parentText + '_FI', results)
예제 #18
0
    def func(self, browser):
        """ Perform some operations on selected traces. 
    
        Options:
        1) keep original traces intact and create processed copies
        2) delete the data points between the cursors
        3) offset the start of the trace by a number of X-axis points (adds NaNs)
        """

        ############################################
        # ANALYSIS FUNCTION

        # Get widgets
        plotWidget = browser.ui.dataPlotsWidget
        toolsWidget = browser.ui.oneDimToolStackedWidget

        # Get options
        if self.offsetBox.isChecked():
            try:
                nOffsetPoints = float(self.offsetPoints.text())
            except ValueError:
                aux.error_box('Invalid number of points')
                return

        if self.scaleBox.isChecked():
            try:
                vScale = float(self.scaleValue.text())
            except ValueError:
                aux.error_box('Invalid scale entry')
                return

        # Copy data if required
        if self.keepData.isChecked():
            aux.make_data_copy(browser, plotWidget)

        # Iterate through traces
        i = 0
        for item in plotWidget.plotDataItems:

            # Get dt and data range
            dt = item.attrs['dt']
            data, c1, cx1, cx2 = aux.get_dataRange(plotWidget,
                                                   item,
                                                   cursors=True)

            # Check baseline
            if 'baselineStart' in item.analysis:
                bsl = 0  # the mean of the baseline will always be 0
            else:
                bsl = np.mean(item.data[0:round(1. / dt)])

            # Scale data
            if self.scaleBox.isChecked():
                item.data = item.data * vScale

            if self.normalizeBox.isChecked():
                peakDirection = str(self.peakComboBox.currentText())
                if peakDirection == 'Positive peak':
                    peak = np.max(data)
                else:
                    peak = -np.min(data)
                item.data = item.data / peak

            # Delete points
            if self.delPointsBox.isChecked():
                item.data = np.delete(item.data, np.s_[c1:c1 + len(data) + 1])

            # Add offset
            if self.offsetBox.isChecked():
                offset = int(nOffsetPoints / dt)
                item.data = np.insert(item.data, 0, np.zeros(offset) + np.nan)

            # Operation against selected data (currently only works for one selected data item)
            if self.selectedBox.isChecked():
                operation = str(self.selectedComboBox.currentText())
                if operation == 'Subtract':
                    op = lambda a, b: a - b
                if operation == 'Add':
                    op = lambda a, b: a + b
                try:
                    selectedItem = browser.ui.workingDataTree.selectedItems(
                    )[i]
                    item.data = op(item.data, selectedItem.data)
                except IndexError:
                    aux.error_box(
                        'Number of selected data items does not match number of plotted traces'
                    )
                    return
            i += 1

        # Re-plot data
        pgplot.replot(browser, plotWidget)
예제 #19
0
    def func(self, browser):
        """ Measure selected properties or statistics in the region defined
        by the data cursors.
    
        Rise time and onset are calculated by finding the peak and walking
        back until the limits are crossed. Onset limit is baseline mean; if
        no baseline has been set, it is taken as the mean value of the first
        1 ms of data.
    
        Options:
        1) create new entries in Working Data tree with the results
        """
    
        ############################################
        # ANALYSIS FUNCTION
        
        # Get widgets
        plotWidget = browser.ui.dataPlotsWidget
        toolsWidget = browser.ui.oneDimToolStackedWidget

        # Replot data to clear previous measure plot points
        pgplot.replot(browser, plotWidget)

        # Iterate through traces
        dataMin, dataMax, dataMean, dataMedian, dataSEM = [], [], [], [], []
        dataRiseTime, dataOnset, dataDecay = [], [], []
        for item in plotWidget.plotDataItems:
            
            # Get dt and data range
            dt = item.attrs['dt']
            data, c1, cx1, cx2 = aux.get_dataRange(plotWidget, item, cursors=True)

            # Check baseline
            if 'baselineStart' in item.analysis:
                bsl = 0  # the mean of the baseline will always be 0
            else:
                bsl = np.mean(data[0:round(1./dt)]) 
            
            # Measure selected parameters
            if self.minBox.isChecked():
                y = np.min(data)
                x = np.argmin(data)
                dataMin.append(y)
                aux.plot_point(plotWidget, c1, x, y, dt)                

            if self.maxBox.isChecked():
                y = np.max(data)
                x = np.argmax(data)
                dataMax.append(y)
                aux.plot_point(plotWidget, c1, x, y, dt)  

            if self.meanBox.isChecked():
                y = np.mean(data)
                dataMean.append(y)
                plotWidget.plot([cx1,cx2], [y,y], pen=pg.mkPen('#CF1C04', width=1))  

            if self.medianBox.isChecked():
                y = np.median(data)
                dataMedian.append(y)
                plotWidget.plot([cx1,cx2], [y,y], pen=pg.mkPen('#CF1C04', width=1))  

            if self.semBox.isChecked():
                y = np.std(data)/np.sqrt(len(data))
                dataSEM.append(y)
                plotWidget.plot([cx1,cx2], [y,y], pen=pg.mkPen('#CF1C04', width=1))  

            if self.riseTimeBox.isChecked():
                try:
                    lowerLimit = float(self.riseLowerLimit.text())/100
                    upperLimit = float(self.riseUpperLimit.text())/100
                except ValueError:
                    aux.error_box('Invalid limits')
                    return                                   
                # Get peak
                xPeak, yPeak = self.get_peak(data)
                # Get limits
                lowerLimit = lowerLimit*(yPeak-bsl)+bsl
                upperLimit = upperLimit*(yPeak-bsl)+bsl
                # Find limit crosses
                lowerCrossed, upperCrossed = False, False
                i = 0
                while lowerCrossed==False or upperCrossed==False:
                    if (upperCrossed==False) and self.comp(data[xPeak-i],upperLimit): 
                        xUpper = xPeak-i
                        upperCrossed = True
                    if self.comp(data[xPeak-i], lowerLimit):
                        xLower = xPeak-i
                        lowerCrossed = True
                    i+=1
                dataRiseTime.append((xUpper-xLower)*dt)
                # Plot points 
                aux.plot_point(plotWidget, c1, xLower, lowerLimit, dt) 
                aux.plot_point(plotWidget, c1, xUpper, upperLimit, dt)                 

            if self.onsetBox.isChecked():
                xPeak, yPeak = self.get_peak(data)
                bslCrossed = False
                i = 0
                while bslCrossed==False:
                    if self.comp(data[xPeak-i], bsl):
                        onset = xPeak-i
                        bslCrossed = True
                    i+=1
                aux.plot_point(plotWidget, c1, onset, bsl, dt)
                dataOnset.append(onset*dt)

            if self.decayTimeBox.isChecked():
                try:
                    decayLimit = float(self.decayLimit.text())/100
                except ValueError:
                    aux.error_box('Invalid limits')
                    return       
                xPeak, yPeak = self.get_peak(data)
                yDecay = decayLimit*(yPeak-bsl)+bsl
                decayCrossed = False
                i = 0
                while decayCrossed==False:
                    if self.comp(data[xPeak+i], yDecay):
                        decayTime = xPeak+i
                        decayCrossed = True
                    i+=1
                aux.plot_point(plotWidget, c1, decayTime, yDecay, dt)
                dataDecay.append(decayTime*dt)

        # Store results
        results = []
        if self.storeBox.isChecked():
            if self.minBox.isChecked(): results.append(['Minimum', np.array(dataMin)])
            if self.maxBox.isChecked(): results.append(['Maximum', np.array(dataMax)])
            if self.meanBox.isChecked(): results.append(['Mean', np.array(dataMean)])
            if self.medianBox.isChecked(): results.append(['Median', np.array(dataMedian)])
            if self.semBox.isChecked(): results.append(['SEM', np.array(dataSEM)])
            if self.riseTimeBox.isChecked(): results.append(['RiseTime', np.array(dataRiseTime)])
            if self.onsetBox.isChecked(): results.append(['Onset', np.array(dataOnset)])
            if self.decayTimeBox.isChecked(): results.append(['Decay', np.array(dataDecay)])
            aux.save_results(browser, 'Measurements', results)             
    def func(self, browser):
        """ Plot tracking data in XY from currently plotted X and Y data.
        Output goes to Matplotlib tab.

        Take data between cursors if they are active or the whole trace
        if there are no cursors.

        Options:
        1) Plot histogram
        2) Plot long axis over time
        """

        ############################################
        # ANALYSIS FUNCTION      

        # Read options
        hist = self.histOption.isChecked()
        axisTime = self.plotAxisOption.isChecked()
        color = str(self.color.currentText())

        # Get plotted traces
        traces = self.plotWidget.plotDataItems
        dt = traces[0].attrs['dt']

        # Get X and Y data and check cursors
        X, c1 = aux.get_dataRange(self.plotWidget, traces[0])
        Y, c1 = aux.get_dataRange(self.plotWidget, traces[1])        
       
        # Make sure Y is the long axis
        if X.max() > Y.max():
            Yold = Y
            Y = X
            X = Yold

        # Remove all existing axes
        for ax in self.canvas.fig.axes:
            self.canvas.fig.delaxes(ax)
       
        # Create grid
        if hist: 
            if axisTime:
                nPlots, width_ratios = 3, [1,4,1] 
                histAx = 2
            else:
                nPlots, width_ratios = 2, [1,1]
                histAx = 1
        elif axisTime:
            nPlots, width_ratios = 2, [1,5]
        else:
            nPlots, width_ratios = 1, [1]
        gs = gridspec.GridSpec(1, nPlots, width_ratios=width_ratios)    

        # Create subplots
        ax = []
        for plot in range(nPlots):
            ax.append(self.canvas.fig.add_subplot(gs[plot]))

        # Plot tracking
        ax[0].plot(X, Y, color)

        # Plot long axis over time
        if axisTime:
            xaxis = np.arange(0, len(Y), dt)
            ax[1].plot(xaxis, Y, color)

        # Plot histogram
        if hist:
            h = ax[histAx].hist(Y, bins=30, orientation='horizontal', histtype='stepfilled',
                               normed=True, color=color)


        self.canvas.draw()
예제 #21
0
    def func(self, browser):
        """ Temporary event detection function using amplitude
        threshold only. Noise safety is for when coming down from
        peak, go down an extra amount from threshold before starting
        to search for the next event.
        """
        ############################################
        # ANALYSIS FUNCTION
 
        # Read detection options 
        try:
            threshold = float(self.browser.ui.dataPlotsWidget.cursorThsPos)
        except NameError:
            aux.error_box('No threshold selected')
            return              

        try:
            noiseSafety = float(self.eventNoiseSafety.text())
            smoothFactor = float(self.eventSmooth.text())
            direction = str(self.eventDirection.currentText())
            minDuration = float(self.eventMinDuration.text())
            detectionTrace = str(self.detectionTrace.currentText())
            minInterval = float(self.eventMinInterval.text())
        except NameError:
            aux.error_box('Invalid detection value')
        bslWindow = 1.0
        slowestRise = 0.5
        #minEventInterval = 5000.0

        # Ensure that noise safety has the same sign as the threshold
        noiseSafety = np.sign(threshold) * abs(noiseSafety)

        # Get widgets
        plotWidget = browser.ui.dataPlotsWidget

        # Get dt list and attrs for use in concatenated data
        dtList = aux.get_attr(self.browser.ui.dataPlotsWidget.plotDataItems, 'dt')
        dt = dtList[0]
        self.dt = dt
        item = self.browser.ui.dataPlotsWidget.plotDataItems[0]
        attrs = item.attrs

        # Get data currently plotted and concatenate in a single sweep
        data = []
        for item in plotWidget.plotDataItems:
            trace, c1 = aux.get_dataRange(plotWidget, item)
            data.append(trace)
        data = np.array(data).ravel()

        # Get derivative trace and filter
        dtrace = None
        if detectionTrace=='derivative':
            print threshold
            dtrace = np.diff(data)
            dtrace = acq4filter.besselFilter(dtrace, 2000, 1, dt/1000, 'low', True)

        # Smooth
        self.trace = data
        if smoothFactor > 1:
            data = smooth.smooth(data, window_len=smoothFactor, window='hanning')

        # Comparison functions  
        if direction=='negative':
            comp = lambda a, b: a < b
        elif direction=='positive':
            comp = lambda a, b: a > b
            
        # Correct times for dt    
        minEventInterval = minInterval/dt
        minDuration = minDuration/dt
        bslWindow = bslWindow/dt
        slowestRise = slowestRise/dt
            
        # Run detection
        eventCounter,i = 0,0 #+bslWindow/dt+slowestRise/dt
        iLastDetection = 0
        self.xOnsets, self.yOnsets = [], []
        bsl = 0
        if dtrace is not  None:
            detectionData = dtrace
        else:
            detectionData = data
        while i<len(detectionData):
            # Sliding baseline
            #bsl = np.mean(data[i-bslWindow-slowestRise:i])   
            if comp(detectionData[i]-bsl,threshold):
              print i, i-iLastDetection
              if i-iLastDetection>minEventInterval:  # Min inter-event interval
                self.xOnsets.append(i)
                self.yOnsets.append(data[i])
                eventCounter+=1
                iLastDetection = i
                while i<len(detectionData) and comp(detectionData[i]-bsl,(threshold-noiseSafety)):
                    i+=1 # skip values if index in bounds AND until the value is below/above threshold again
                if i-iLastDetection < minDuration: # Event is too brief
                    self.xOnsets.pop()
                    self.yOnsets.pop()
                    eventCounter-=1
              else:
                i+=1   # for min event interval   
            else:
                i+=1

        frequency = eventCounter/(len(data)*dt)*1000   # in Hz
        print eventCounter, 'events detected at', frequency, 'Hz'

        # Store event onsets and peaks in h5 data tree
        results = []
        results.append(['trace', np.array(self.trace), attrs])
        results.append(['xOnsets', np.array(self.xOnsets)])
        results.append(['yOnsets', np.array(self.yOnsets)])
        results.append(['number', np.array([eventCounter])])
        results.append(['frequency', np.array([frequency])])
        aux.save_results(browser, 'Event_Detection', results)    

        # Plot results
        self.show_events(data, np.array(self.xOnsets), np.array(self.yOnsets), dt)

        # Turn cursors off (the plot has been cleared so there are no cursors displayed)    
        self.browser.ui.actionShowCursors.setChecked(False)
        plotWidget.cursor = False          
예제 #22
0
    def func(self, browser):
        """ Measure selected properties or statistics in the region defined
        by the data cursors.
    
        Rise time and onset are calculated by finding the peak and walking
        back until the limits are crossed. Onset limit is baseline mean; if
        no baseline has been set, it is taken as the mean value of the first
        1 ms of data.
    
        Options:
        1) create new entries in Working Data tree with the results
        """

        ############################################
        # ANALYSIS FUNCTION

        # Get widgets
        plotWidget = browser.ui.dataPlotsWidget
        toolsWidget = browser.ui.oneDimToolStackedWidget

        # Replot data to clear previous measure plot points
        pgplot.replot(browser, plotWidget)

        # Iterate through traces
        dataMin, dataMax, dataMean, dataMedian, dataSEM = [], [], [], [], []
        dataRiseTime, dataOnset, dataDecay = [], [], []
        for item in plotWidget.plotDataItems:

            # Get dt and data range
            dt = item.attrs['dt']
            data, c1, cx1, cx2 = aux.get_dataRange(plotWidget,
                                                   item,
                                                   cursors=True)

            # Check baseline
            if 'baselineStart' in item.analysis:
                bsl = 0  # the mean of the baseline will always be 0
            else:
                bsl = np.mean(data[0:round(1. / dt)])

            # Measure selected parameters
            if self.minBox.isChecked():
                y = np.min(data)
                x = np.argmin(data)
                dataMin.append(y)
                aux.plot_point(plotWidget, c1, x, y, dt)

            if self.maxBox.isChecked():
                y = np.max(data)
                x = np.argmax(data)
                dataMax.append(y)
                aux.plot_point(plotWidget, c1, x, y, dt)

            if self.meanBox.isChecked():
                y = np.mean(data)
                dataMean.append(y)
                plotWidget.plot([cx1, cx2], [y, y],
                                pen=pg.mkPen('#CF1C04', width=1))

            if self.medianBox.isChecked():
                y = np.median(data)
                dataMedian.append(y)
                plotWidget.plot([cx1, cx2], [y, y],
                                pen=pg.mkPen('#CF1C04', width=1))

            if self.semBox.isChecked():
                y = np.std(data) / np.sqrt(len(data))
                dataSEM.append(y)
                plotWidget.plot([cx1, cx2], [y, y],
                                pen=pg.mkPen('#CF1C04', width=1))

            if self.riseTimeBox.isChecked():
                try:
                    lowerLimit = float(self.riseLowerLimit.text()) / 100
                    upperLimit = float(self.riseUpperLimit.text()) / 100
                except ValueError:
                    aux.error_box('Invalid limits')
                    return
                # Get peak
                xPeak, yPeak = self.get_peak(data)
                # Get limits
                lowerLimit = lowerLimit * (yPeak - bsl) + bsl
                upperLimit = upperLimit * (yPeak - bsl) + bsl
                # Find limit crosses
                lowerCrossed, upperCrossed = False, False
                i = 0
                while lowerCrossed == False or upperCrossed == False:
                    if (upperCrossed == False) and self.comp(
                            data[xPeak - i], upperLimit):
                        xUpper = xPeak - i
                        upperCrossed = True
                    if self.comp(data[xPeak - i], lowerLimit):
                        xLower = xPeak - i
                        lowerCrossed = True
                    i += 1
                dataRiseTime.append((xUpper - xLower) * dt)
                # Plot points
                aux.plot_point(plotWidget, c1, xLower, lowerLimit, dt)
                aux.plot_point(plotWidget, c1, xUpper, upperLimit, dt)

            if self.onsetBox.isChecked():
                xPeak, yPeak = self.get_peak(data)
                bslCrossed = False
                i = 0
                while bslCrossed == False:
                    if self.comp(data[xPeak - i], bsl):
                        onset = xPeak - i
                        bslCrossed = True
                    i += 1
                aux.plot_point(plotWidget, c1, onset, bsl, dt)
                dataOnset.append(onset * dt)

            if self.decayTimeBox.isChecked():
                try:
                    decayLimit = float(self.decayLimit.text()) / 100
                except ValueError:
                    aux.error_box('Invalid limits')
                    return
                xPeak, yPeak = self.get_peak(data)
                yDecay = decayLimit * (yPeak - bsl) + bsl
                decayCrossed = False
                i = 0
                while decayCrossed == False:
                    if self.comp(data[xPeak + i], yDecay):
                        decayTime = xPeak + i
                        decayCrossed = True
                    i += 1
                aux.plot_point(plotWidget, c1, decayTime, yDecay, dt)
                dataDecay.append(decayTime * dt)

        # Store results
        results = []
        if self.storeBox.isChecked():
            if self.minBox.isChecked():
                results.append(['Minimum', np.array(dataMin)])
            if self.maxBox.isChecked():
                results.append(['Maximum', np.array(dataMax)])
            if self.meanBox.isChecked():
                results.append(['Mean', np.array(dataMean)])
            if self.medianBox.isChecked():
                results.append(['Median', np.array(dataMedian)])
            if self.semBox.isChecked():
                results.append(['SEM', np.array(dataSEM)])
            if self.riseTimeBox.isChecked():
                results.append(['RiseTime', np.array(dataRiseTime)])
            if self.onsetBox.isChecked():
                results.append(['Onset', np.array(dataOnset)])
            if self.decayTimeBox.isChecked():
                results.append(['Decay', np.array(dataDecay)])
            aux.save_results(browser, 'Measurements', results)